• Title/Summary/Keyword: KorLex

Search Result 19, Processing Time 0.024 seconds

KorLexClas 1.5: A Lexical Semantic Network for Korean Numeral Classifiers (한국어 수분류사 어휘의미망 KorLexClas 1.5)

  • Hwang, Soon-Hee;Kwon, Hyuk-Chul;Yoon, Ae-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.60-73
    • /
    • 2010
  • This paper aims to describe KorLexClas 1.5 which provides us with a very large list of Korean numeral classifiers, and with the co-occurring noun categories that select each numeral classifier. Differently from KorLex of other POS, of which the structure depends largely on their reference model (Princeton WordNet), KorLexClas 1.0 and its extended version 1.5 adopt a direct building method. They demand a considerable time and expert knowledge to establish the hierarchies of numeral classifiers and the relationships between lexical items. For the efficiency of construction as well as the reliability of KorLexClas 1.5, we use following processes: (1) to use various language resources while their cross-checking for the selection of classifier candidates; (2) to extend the list of numeral classifiers by using a shallow parsing techniques; (3) to set up the hierarchies of the numeral classifiers based on the previous linguistic studies; and (4) to determine LUB(Least Upper Bound) of the numeral classifiers in KorLexNoun 1.5. The last process provides the open list of the co-occurring nouns for KorLexClas 1.5 with the extensibility. KorLexClas 1.5 is expected to be used in a variety of NLP applications, including MT.

Automatic Mapping of Korean Wordnet "KorLex" to Semantic Classes of Sejong Dictionary (세종 의미 부류와 KorLex 명사 어휘 의미망 자동 맵핑)

  • So, Gilja;Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.92-96
    • /
    • 2009
  • 인간이 가진 개념을 지식베이스화하려는 시도 중 하나로 의미망이 구축되고 있다. 한국어를 대상으로 한 어휘 의미망 중 프린스턴 대학의 WordNet을 대역한 KorLex는 1,2단계에서 한국어 어휘의미의 특성을 반영하여 개념 및 의미구조를 재구조화하고 있다. 그러나 현재 KorLex의 동의어 집합을 구성하는 어휘 의미에는 논항정보를 따로 구성할 수 없었다. 본 연구는 세종 전자 사전 격틀정보내의 선택제약조건(selectional restriction)으로 사용되고 있는 의미 부류와 KorLex의 명사 어휘 의미망을 자동 맵핑하는 방안을 제안함으로써 KorLex에서 세종 전자 사전 격틀정보를 활용할 수 있는 가능성을 제공한다.

  • PDF

Mapping Heterogenous Hierarchical Concept Classifications for the HLP Applications -A case of Sejong Semantic Classes and KorLexNoun 1.5- (인간언어공학에의 활용을 위한 이종 개념체계 간 사상 -세종의미부류와 KorLexNoun 1.5-)

  • Bae, Sun-Mee;Im, Kyoungup;Yoon, Aesun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.6-13
    • /
    • 2009
  • 본 연구에서는 인간언어공학에서의 활용을 위해 세종전자사전의 의미부류와 KorLexNoun 1.5의 상위노드 간의 사상을 목표로 전문가의 수작업에 의한 세밀한 사상 방법론(fine-grained mapping method)을 제안한다. 또한 이질적인 두 이종 자원 간의 사상에 있어 각 의미체계의 이질성으로 인해 발생하는 여러 가지 문제점을 살펴보고, 그 해결방안을 제안한다. 본 연구는 세종의미부류체계가 밝히고자 했던 한국어의 의미구조와, Prinston WordNet을 참조로 하여 KorLexNoun에 여전히 영향을 미치고 있는 영어 의미구조를 비교함으로써 공통점과 차이점을 파악할 수 있고, 이를 바탕으로 언어 독립적인 개념체계를 구축하는 데 기여할 수 있다. 또한 향후 KorLex의 용언에 기술되어 있는 문형정보와 세종 전자사전의 용언의 격틀 정보를 통합 구축하여 구문분석에서 이용할 때, 세종 의미부류와 KorLexNoun의 상위노드를 통합 구축함으로써 논항의 일반화된 선택제약규칙의 기술에서 이용될 수 있다. 본 연구에서 제안된 사상방법론은 향후 이종 자원의 자동 사상 연구에서도 크게 기여할 것이다. 아울러 두 이종 자원의 사상을 통해 두 의미체계가 지닌 장점을 극대화하고, 동시에 단점을 상호 보완하여 보다 완전한 언어자원으로써 구문분석이나 의미분석에서 이용될 수 있다.

  • PDF

Automatic Mapping Between Large-Scale Heterogeneous Language Resources for NLP Applications: A Case of Sejong Semantic Classes and KorLexNoun for Korean

  • Park, Heum;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.15 no.2
    • /
    • pp.23-45
    • /
    • 2011
  • This paper proposes a statistical-based linguistic methodology for automatic mapping between large-scale heterogeneous languages resources for NLP applications in general. As a particular case, it treats automatic mapping between two large-scale heterogeneous Korean language resources: Sejong Semantic Classes (SJSC) in the Sejong Electronic Dictionary (SJD) and nouns in KorLex. KorLex is a large-scale Korean WordNet, but it lacks syntactic information. SJD contains refined semantic-syntactic information, with semantic labels depending on SJSC, but the list of its entry words is much smaller than that of KorLex. The goal of our study is to build a rich language resource by integrating useful information within SJD into KorLex. In this paper, we use both linguistic and statistical methods for constructing an automatic mapping methodology. The linguistic aspect of the methodology focuses on the following three linguistic clues: monosemy/polysemy of word forms, instances (example words), and semantically related words. The statistical aspect of the methodology uses the three statistical formulae ${\chi}^2$, Mutual Information and Information Gain to obtain candidate synsets. Compared with the performance of manual mapping, the automatic mapping based on our proposed statistical linguistic methods shows good performance rates in terms of correctness, specifically giving recall 0.838, precision 0.718, and F1 0.774.

  • PDF

Cross-Enrichment of the Heterogenous Ontologies Through Mapping Their Conceptual Structures: the Case of Sejong Semantic Classes and KorLexNoun 1.5 (이종 개념체계의 상호보완방안 연구 - 세종의미부류와 KorLexNoun 1.5 의 사상을 중심으로)

  • Bae, Sun-Mee;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.165-196
    • /
    • 2010
  • The primary goal of this paper is to propose methods of enriching two heterogeneous ontologies: Sejong Semantic Classes (SJSC) and KorLexNoun 1.5 (KLN). In order to achieve this goal, this study introduces the pros and cons of two ontologies, and analyzes the error patterns found during the fine-grained manual mapping processes between them. Error patterns can be classified into four types: (1) structural defectives involved in node branching, (2) errors in assigning the semantic classes, (3) deficiency in providing linguistic information, and (4) lack of the lexical units representing specific concepts. According to these error patterns, we propose different solutions in order to correct the node branching defectives and the semantic class assignment, to complement the deficiency of linguistic information, and to increase the number of lexical units suitably allotted to their corresponding concepts. Using the results of this study, we can obtain more enriched ontologies by correcting the defects and errors in each ontology, which will lead to the enhancement of practicality for syntactic and semantic analysis.

  • PDF

Methodologies for Constructing KorLex 1.5 (a Korean WordNet) and its Semantic Structure (한국어 어휘의미망 KorLex 1.5의 구축방법론과 정보구조)

  • Yoon, Aesun;Kwon, Hyuk-Chul;Lee, Eun-Ryoung;Hwang, Soon-Hee
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.42-47
    • /
    • 2008
  • 1980년대 중반부터 지난 20여 년간 구축해 온 영어 워드넷(PWN)은 인간의 심상어휘집을 재현하려는 목적으로 개발되기 시작하였으나, 그 활용 가능성에 주목한 것은 자연언어처리와 지식공학 분야다. 컴퓨터 매개 의사소통(CMC), 인간-컴퓨터 상호작용(HCI)에서 인간 언어를 자연스럽게 사용하여 필요한 정보를 획득하기 위해서는 의미와 지식의 처리가 필수적인데, 그 해결의 실마리를 어휘라는 실체를 가진 언어단위에서 찾을 수 있기 때문이다. 이후 전 세계적으로 약 50개 언어의 어휘의미망이 PWN을 참조모델로 구축되어 다국어처리의 기반을 제공할 뿐 아니라, 시맨틱 웹 이후 더욱 주목 받고 다양한 방식으로 활용되고 있다. 본고는 PWN을 참조 모델로 2004년부터 2007년까지 구축한 한국어 어휘의미망 KorLex 1.5를 소개하는 데 있다. 현재 KorLex은 명사, 동사, 형용사, 부사 및 분류사로 구성되며, 약 13만 개의 신셋과 약 15만 개의 어의를 포함하고 있다.

  • PDF

Construction of Korean Wordnet "KorLex 1.5" (한국어 어휘의미망 "KorLex 1.5"의 구축)

  • Yoon, Ae-Sun;Hwang, Soon-Hee;Lee, Eun-Ryoung;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.92-108
    • /
    • 2009
  • The Princeton WordNet (PWN), which was developed during last 20 years since the mid 80, aimed at representing a mental lexicon inside the human mind. Its potentiality, applicability and portability were more appreciated in the fields of NLP and KE than in cognitive psychology. The semantic and knowledge processing is indispensable in order to obtain useful information using human languages, in the CMC and HCI environment. The PWN is able to provide such NLP-based systems with 'concrete' semantic units and their network. Referenced to the PWN, about 50 wordnets of different languages were developed during last 10 years and they enable a variety of multilingual processing applications. This paper aims at describing PWN-referenced Korean Wordnet, KorLex 1.5, which was developed from 2004 to 2007, and which contains currently about 130,000 synsets and 150,000 word senses for nouns, verbs, adjectives, adverbs, and classifiers.

Generalization of error decision rules in a grammar checker using Korean WordNet, KorLex (명사 어휘의미망을 활용한 문법 검사기의 문맥 오류 결정 규칙 일반화)

  • So, Gil-Ja;Lee, Seung-Hee;Kwon, Hyuk-Chul
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.405-414
    • /
    • 2011
  • Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.

The Detection and Correction of Context Dependent Errors of The Predicate using Noun Classes of Selectional Restrictions (선택 제약 명사의 의미 범주 정보를 이용한 용언의 문맥 의존 오류 검사 및 교정)

  • So, Gil-Ja;Kwon, Hyuk-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • Korean grammar checkers typically detect context-dependent errors by employing heuristic rules; these rules are formulated by language experts and consisted of lexical items. Such grammar checkers, unfortunately, show low recall which is detection ratio of errors in the document. In order to resolve this shortcoming, a new error-decision rule-generalization method that utilizes the existing KorLex thesaurus, the Korean version of Princeton WordNet, is proposed. The method extracts noun classes from KorLex and generalizes error-decision rules from them using the Tree Cut Model and information-theory-based MDL (minimum description length).

Word Sense Distinction of Middle Verbs for Korean Verb Wordnet (한국어 동사의 어휘의미망 구축을 위한 중립동사의 의미분할)

  • Lee, Eunr-Young;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.9 no.2
    • /
    • pp.23-48
    • /
    • 2005
  • This study aims to discuss the word sense distinction of Korean middle verbs for restructuring KorLexVerb 1.0. Despite the duality of its meaning and syntactic structure, the word senses of middle verb are not clearly distinguished in current dictionaries. The underspecification causes very often mismatches that a same Korean word sense is used for two different English verb senses. A close examination on the syntactic and semantic properties of middle verb shows us that the word sense distinction and the reconstruction of hierarchical structure are indispensable. Finally, by doing this fine grained word sense distinction, we propose an alternative way of classification and description of the verb polysemy for KorLexVerb 1.0 as well as for dictionary-like language resources.

  • PDF