• Title/Summary/Keyword: Kompsat

Search Result 1,081, Processing Time 0.019 seconds

A Comparative Errors Assessment Between Surface Albedo Products of COMS/MI and GK-2A/AMI (천리안위성 1·2A호 지표면 알베도 상호 오차 분석 및 비교검증)

  • Woo, Jongho;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Byeon, Yugyeong;Jeon, Uujin;Sohn, Eunha;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1767-1772
    • /
    • 2021
  • Global satellite observation surface albedo data over a long period of time are actively used to monitor changes in the global climate and environment, and their utilization and importance are great. Through the generational shift of geostationary satellites COMS (Communication, Ocean and Meteorological Satellite)/MI (Meteorological Imager sensor) and GK-2A (GEO-KOMPSAT-2A)/AMI (Advanced Meteorological Imager sensor), it is possible to continuously secure surface albedo outputs. However, the surface albedo outputs of COMS/MI and GK-2A/AMI differ between outputs due to Differences in retrieval algorithms. Therefore, in order to expand the retrieval period of the surface albedo of COMS/MI and GK-2A/AMI to secure continuous climate change monitoring linkage, the analysis of the two satellite outputs and errors should be preceded. In this study, error characteristics were analyzed by performing comparative analysis with ground observation data AERONET (Aerosol Robotic Network) and other satellite data GLASS (Global Land Surface Satellite) for the overlapping period of COMS/MI and GK-2A/AMI surface albedo data. As a result of error analysis, it was confirmed that the RMSE of COMS/MI was 0.043, higher than the RMSE of GK-2A/AMI, 0.015. In addition, compared to other satellite (GLASS) data, the RMSE of COMS/MI was 0.029, slightly lower than that of GK-2A/AMI 0.038. When understanding these error characteristics and using COMS/MI and GK-2A/AMI's surface albedo data, it will be possible to actively utilize them for long-term climate change monitoring.

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula (최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화)

  • Kim, Hyo Jeong;Kim, Da Bin;Jeong, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.264-277
    • /
    • 2021
  • This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network (전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지)

  • Song, Ah Ram;Choi, Jae Wan;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2019
  • As the number of available satellites increases and technology advances, image information outputs are becoming increasingly diverse and a large amount of data is accumulating. In this study, we propose a change detection method for high-resolution satellite images that uses transfer learning and a deep learning network to overcome the limit caused by insufficient training data via the use of pre-trained information. The deep learning network used in this study comprises convolutional layers to extract the spatial and spectral information and convolutional long-short term memory layers to analyze the time series information. To use the learned information, the two initial convolutional layers of the change detection network are designed to use learned values from 40,000 patches of the ISPRS (International Society for Photogrammertry and Remote Sensing) dataset as initial values. In addition, 2D (2-Dimensional) and 3D (3-dimensional) kernels were used to find the optimized structure for the high-resolution satellite images. The experimental results for the KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) satellite images show that this change detection method can effectively extract changed/unchanged pixels but is less sensitive to changes due to shadow and relief displacements. In addition, the change detection accuracy of two sites was improved by using 3D kernels. This is because a 3D kernel can consider not only the spatial information but also the spectral information. This study indicates that we can effectively detect changes in high-resolution satellite images using the constructed image information and deep learning network. In future work, a pre-trained change detection network will be applied to newly obtained images to extend the scope of the application.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning (딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석)

  • Nayoung Kim;Yerin Yun;Jaewan Choi;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Satellite imagery contains various elements such as clouds, cloud shadows, and terrain shadows. Accurately identifying and eliminating these factors that complicate satellite image analysis is essential for maintaining the reliability of remote sensing imagery. For this reason, satellites such as Landsat-8, Sentinel-2, and Compact Advanced Satellite 500-1 (CAS500-1) provide Usable Data Masks(UDMs)with images as part of their Analysis Ready Data (ARD) product. Precise detection of clouds and their shadows is crucial for the accurate construction of these UDMs. Existing cloud and their shadow detection methods are categorized into threshold-based methods and Artificial Intelligence (AI)-based methods. Recently, AI-based methods, particularly deep learning networks, have been preferred due to their advantage in handling large datasets. This study aims to analyze the applicability of constructing UDMs for high-resolution satellite images through deep learning-based cloud and their shadow detection using open-source datasets. To validate the performance of the deep learning network, we compared the detection results generated by the network with pre-existing UDMs from Landsat-8, Sentinel-2, and CAS500-1 satellite images. The results demonstrated that high accuracy in the detection outcomes produced by the deep learning network. Additionally, we applied the network to detect cloud and their shadow in KOMPSAT-3/3A images, which do not provide UDMs. The experiment confirmed that the deep learning network effectively detected cloud and their shadow in high-resolution satellite images. Through this, we could demonstrate the applicability that UDM data for high-resolution satellite imagery can be constructed using the deep learning network.

Monitoring Wheat Growth by COSMO-SkyMed SAR Images (COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong;Lee, Hoonyol;Oh, Yisok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • We analyzed the relationships between backscattering coefficients of wheat measured by COSMO-SkyMed SAR and biophysical measurements such as biomass, vegetation water content, and soil moisture over an entire wheat growth period. Backscattering coefficients increased until DOY 129 and then decreased along with fresh weight, dry weight, and vegetation water content. Correlation analysis between backscattering and wheat growth parameters revealed that backscatter correlated well with fresh weight (r=0.88), vegetation water content (r=0.87), and dry weight (r=0.80), while backscatter did not correlated with soil moisture (r=0.18). Prediction equations for estimation of wheat growth parameters from the backscattering coefficients were developed.

Analysis of NWP GRIB Data for LEO Satellite Mission Planning (저궤도 관측위성 임무계획(Mission Planning)을 위한 기상수치예보 GRIB Data 분석)

  • Seo Jeong-Soo;Seo Seok-Bae;Bae Hee-Jin;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.178-186
    • /
    • 2006
  • 기상 수치예보는 (Numerical Weather Pridiction, NWP)는 바람, 기온, 등과 같은 기상요소의 시간 변화를 나타내는 물리방정식을 컴퓨터로 풀어 미래의 대기 상태를 예상하는 과학적인 방법으로 지구를 상세한 격자 2진부호(GRIdded Binary, 이하 GRIB)로 나누어 그 격자점에서의 값으로 대기 상태를 나타낸다. 지구 각지에서의 각종 관측자료를 기초로 격자점상의 현재값을 구한다. 대용량의 격자데이터는 이진형태이어서 컴퓨터, 서버 저장장치에서 동일형태 데이터로 존재한다. 우리나라 최초의 저궤도 관측 위성인 다목적 실용위성 KOMPSAT-1호(이하, 아리랑 위성1호)는 전자광학카메라(Electro Optical Camera, EOC)를 탑재하여 1999년 12월 21일에 발사된 이후 2006년 1월 현재까지 6여년간 성공적으로 임무를 수행, 7049여회의 영상을 획득하여 국가적으로 귀중한 자료로 활용하고 있다. 아리랑 위성1호는 일일 2-3회 EOC영상을 획득하고 있으며, 임무계획(Mission Planning)은 MP(Mission Planner)가 사용자로부터 자료를 수집하여 임무분석 및 계획 서브시스템(MAPS)에 의해 계산되어진 위성의 제도예측 데이터에 촬영하고자하는 목표지점 좌표를 입력하여 자동명령생성기(KSCG)에 의해 계산된 촬영 경사각도(Tilt)값을 위성에 전송하여 목표지역의 영상을 획득하게 된다. 위성영상 획득에 있어 고가의 위성을 운영하면서 기상의 상태를 정확히 예측하여 실패없이 유효한 영상을 획득하는 것이 무엇보다 중요하다. 본 논문에서는 효율적인 위성임무계획을 위한 기상수치예보 자료를 분석하여 앞으로 발사하게 될 고해상 카메라 탑제위성인 아리랑 위성2호와 3호에 적용하고자 한다. the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)

  • PDF

Content Analysis-based Adaptive Filtering in The Compressed Satellite Images (위성영상에서의 적응적 압축잡음 제거 알고리즘)

  • Choi, Tae-Hyeon;Ji, Jeong-Min;Park, Joon-Hoon;Choi, Myung-Jin;Lee, Sang-Keun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.84-95
    • /
    • 2011
  • In this paper, we present a deblocking algorithm that removes grid and staircase noises, which are called "blocking artifacts", occurred in the compressed satellite images. Particularly, the given satellite images are compressed with equal quantization coefficients in row according to region complexity, and more complicated regions are compressed more. However, this approach has a problem that relatively less complicated regions within the same row of complicated regions have blocking artifacts. Removing these artifacts with a general deblocking algorithm can blur complex and undesired regions as well. Additionally, the general filter lacks in preserving the curved edges. Therefore, the proposed algorithm presents an adaptive filtering scheme for removing blocking artifacts while preserving the image details including curved edges using the given quantization step size and content analysis. Particularly, WLFPCA (weighted lowpass filter using principle component analysis) is employed to reduce the artifacts around edges. Experimental results showed that the proposed method outperforms SA-DCT in terms of subjective image quality.