DOI QR코드

DOI QR Code

The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula

최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화

  • Kim, Hyo Jeong (Department of Environment Education, Korea National University of Education) ;
  • Kim, Da Bin (Department of Environment Education, Korea National University of Education) ;
  • Jeong, Ok Jin (Department of Environment Education, Korea National University of Education) ;
  • Moon, Yun Seob (Department of Environment Education, Korea National University of Education)
  • 김효정 (한국교원대학교 환경교육과) ;
  • 김다빈 (한국교원대학교 환경교육과) ;
  • 정옥진 (한국교원대학교 환경교육과) ;
  • 문윤섭 (한국교원대학교 환경교육과)
  • Received : 2021.05.04
  • Accepted : 2021.06.08
  • Published : 2021.06.30

Abstract

This study analyzed the relationship between the total precipitable water vapor in the atmosphere and the moving speed of recent typhoons. This study used ground observation data of air temperature, precipitation, and wind speed from the Korea Meteorological Administration (KMA) as well as total rainfall data and Red-Green-Blue (RGB) composite images from the U.S. Meteorological and Satellite Research Institute and the KMA's Cheollian Satellite 2A (GEO-KOMPSAT-2A). Using the typhoon location and moving speed data provided by the KMA, we compared the moving speeds of typhoon Bavi, Maysak, and Haishen from 2020, typhoon Tapah from 2019, and typhoon Kong-rey from 2018 with the average typhoon speed by latitude. Tapah and Kong-rey moved at average speed with changing latitude, while Bavi and Maysak showed a significant decrease in moving speed between approximately 25°N and 30°N. This is because a water vapor band in the atmosphere in front of these two typhoons induced frontogenesis and prevented their movement. In other words, when the water vapor band generated by the low-level jet causes frontogenesis in front of the moving typhoon, the high pressure area located between the site of frontogenesis and the typhoon develops further, inducing as a blocking effect. Together with the tropical night phenomenon, this slows the typhoon. Bavi and Maysak were accompanied by copious atmospheric water vapor; consequently, a water vapor band along the low-level jet induced frontogenesis. Then, the downdraft of the high pressure between the frontogenesis and the typhoon caused the tropical night phenomenon. Finally, strong winds and heavy rains occurred in succession once the typhoon landed.

본 연구의 목적은 최근 발생한 태풍들의 이동속도와 관련하여 대기 중 총가강수량의 변화를 분석하는 것이다. 이 연구를 위해 미국기상위성연구소 및 기상청 천리안위성 2A호(GEO-KOMPSAT-2A)의 총가강수량 및 주야간 RGB 합성영상 자료뿐만 아니라 기상청의 기온, 강수량 및 풍속 등의 지상 관측 자료가 사용되었다. 기상청에서 제공하는 태풍 위치 및 이동속도를 활용하여, 2020년 태풍 바비, 마이삭, 하이선과 2019년 태풍 타파, 그리고 2018년 태풍 콩레이의 이동속도를 위도별 태풍 평균속도 통계자료와 비교하였다. 그 결과, 타파와 콩레이는 태풍의 위도별 평균속도와 유사하게 나타났으나 바비와 마이삭은 위도 약 25°N-30°N 구간에서 이동속도가 크게 감소하여 나타났다. 이는 대기 중의 수증기 띠가 전선의 형태로 바비와 마이삭 두 태풍의 전방에 위치하여 이들 태풍의 이동에 방해를 주었기 때문이었다. 즉 이동하는 태풍의 전방에 하층제트로 인해 발생한 수증기 띠가 전선을 형성할 경우, 이 전선과 태풍 사이에 위치하는 고기압 역은 더욱 발달하면서 열대야와 함께 블로킹 효과로 작용하여 태풍의 이동속도가 느리게 나타났다. 결과적으로 대기 중의 수증기가 많았던 바비와 마이삭의 경우, 1차로 하층제트를 따라 수증기 띠가 전선을 형성함으로 인한 집중호우가, 2차로 전선과 태풍 사이에 고기압 역의 하강기류로 인한 열대야 현상이, 그리고 3차로 태풍 자체의 육지 상륙에 의한 강풍과 폭우가 연달아 발생하였다.

Keywords

Acknowledgement

이 연구는 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2018R1D1A1B07049803).

References

  1. Ahn, S.H., Kim, B.J., Lee, S.L., and Kim, H.K., 2008. The Characteristics of Disaster by Track of typhoons Affecting the Korean Peninsula. Journal of the Korean Society of Hazard Mitigation, 8(3), 29-36. (in Korean)
  2. Cha, E.J., Go, S.W., Yang, G.J., Won, S.H., and Im, M.S., 2009. A Study on the Type of Typhoon Path and the Distribution of Precipitation on the Korean Peninsula. Korean Society of Hazard Mitigation, 9(3), 64-67. (in Korean)
  3. Chen, G. T. J. and C. C. Yu, 1988. Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Monthly Weather Review, 116, 884-891. https://doi.org/10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2
  4. Choi, K.S., Park, S.W., Chang, K.H., and Lee, J.H., 2013. Possible Relationship between NAO and Western North Pacific Typhoon Genesis Frequency. Journal of the Korean Earth Science Society, 34(3), 224-234. (in Korean) https://doi.org/10.5467/JKESS.2013.34.3.224
  5. Choi, K.S., Park, K.J., Kim, J.Y., and Kim, B.J., 2015. Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity. Journal of the Korean Earth Science Society, 36(2), 171-180. (in Korean) https://doi.org/10.5467/JKESS.2015.36.2.171
  6. Hoegh-Guldberg, O., D. Jacob, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K. Ebi, F. Engelbrecht, and J. Guiot, 2018. Impacts of 1.5 C global warming on natural and human systems, Global warming of 1.5℃. An IPCC Special Report, http://hdl.handle.net/10138/311749, Accessed on Sep. 25, 2020.
  7. Jun, S.H., Lee, W.J., Kang, K.R., and Yun W.T., 2015. Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific. Atmosphere 25(2), 2015.06, 375-387 (13 pages). (in Korean) https://doi.org/10.14191/Atmos.2015.25.2.375
  8. Kim, H.D., Won, S.H., Choi, K.S., Park, S.W., and Jang K.H., 2011. Comparing the Effect of Both Thermal and Mechanical Forcing on the Error of Typhoon Track. Journal of the Environmental Sciences, 21 (2), 263-266. (in Korean) https://doi.org/10.1016/S1001-0742(08)62261-5
  9. Kim, K.R., Kim, Y.H., Lee, H.K., and Park, S.H., 2000. Typhoon trend analysis using steam image of GMS-5 satellite. Journal of Korean Meteorological Society, 2000.10, 224-226 (3 pages). (in Korean)
  10. Kim, T.J., Park, K.C., and Kwon, H.H., 2015. Assessment of Precipitation Characteristics and Synoptic Pattern Associated with Typhoon Affecting the South Korea. Journal of Korea Water Resource, 48(6), 463-477. (in Korean) https://doi.org/10.3741/JKWRA.2015.48.6.463
  11. Korea Meteorological Administration, 2011. Typhoon white book. 11 pp
  12. Korea Meteorological Administration, 2020a. Korea Climate Change Assessment Report. 29 pp
  13. Korea Meteorological Administration, 2020b. Typhoon Analysis Report on the Korean Peninsula (2019).
  14. Korea Meteorological Administration, 2019. Typhoon Analysis Report on the Korean Peninsula (2018).
  15. Kossin, J. P. 2018. A global slowdown of tropical-cyclone translation speed. Nature, 558(7708), 104-107. https://doi.org/10.1038/s41586-018-0158-3
  16. Kwon, K.K., Jho, M.H., and Yoon, S.B., 2020. Numerical Simulation of Storm Surge and Wave due to Typhoon Kong-Rey of 2018. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 252-261. (in Korean) https://doi.org/10.9765/KSCOE.2020.32.4.252
  17. Lee, J.H., Yu, C.H., Im, J.H., Shin, Y.J., and Jo, D.J., 2020. Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output. Korean Journal of Remote Sensing, 36(5), 1037-1051. (in Korean)
  18. Lee, M.S., Sohn, S.H., Kim, D.H., and Suh, A.S., 1996. Forecasting of Typhoon Motion Using Water Vapor Images. Asia-Pacific Journal of Atmospheric Sciences, 32(3), 485-494. (in Korean)
  19. Lee, Y.J., Kwon, H.J., Joo, D.C., 2011. Dynamic data-base Typhoon Track Prediction (DYTRAP). Atmosphere 21(2), 2011.06, 209-220 (12 pages). (in Korean) https://doi.org/10.14191/Atmos.2011.21.2.209
  20. Moon, I.J. and Kim, S.H., 2019. Global warming and typhoon movement speed. Journal of Korean Meteorological Society, 29(4), 19-19 (1 pages). (in Korean)
  21. Moon, H.J., Kim, J.W., Bin G., Duane E. W., Choi, J.T., Goo, T.Y., Kim, Y.M., and Byun, Y.H., 2019. The Effects of Atmospheric River Landfalls on Precipitation and Temperature in Korea. Korean Meteorological Society, 29(4), 343-353. (in Korean)
  22. Na, H.N., Jung W.S., and Park, J.K., 2019. A Study on the Characteristics of Maximum Wind Speed Distributions by Typhoon Track in the Korean Peninsula. Journal of Korean Society for Atmospheric Environment, 35(1), 36-48. (in Korean) https://doi.org/10.5572/kosae.2019.35.1.036
  23. Nam, J.Y., Lee, H.S., and Song, D.S., 2014. Analysis of GPS Precipitable Water Vapor Variation during Typhoon NEOGURI. Korean Society of Civil Engineers Conference, 1703-1704. (in Korean)
  24. Park, C.H., Lee, H.W., and Jung, W.S., 2003. The Effects of Low-Level Jet and Topography on Heavy Rainfall near Mt. Jirisan, Asia-Pacific Journal of Atmospheric Sciences, 39(4), 441-458.
  25. Park, J.K., Kim, B.S., Jung, W.S., Kim, E.B., and Lee, D.G., 2006. Change in Statistical Characteristics of Typhoon Affecting the Korean Peninsula. Atmosphere, 16(1), 1-17. (in Korean)
  26. Park, S.J. and Jo, S.J., 1998. Typhoon Track Prediction using Neural Networks. Journal of Intelligence and Information Systems 4(1), 1998.6, 79-88 (4 pages). (in Korean)
  27. Song, D.S., and Yun, H.S., 2006. Analysis of GPS Precipitable Water Vapor Variation During the Influence of a Typhoon EWINIAR. Journal of Korean Society of Civil Engineers D26, 2006.11, 1033-1041 (9 pages). (in Korean)
  28. Shimokawa, S., Iizuka, S., Kayahara, T., Suzuki, S., and Murakami, T., 2011. Fujiwhara effect; the interaction between T0917 and T0918. Nat Disaster Res Rep, 45, 23-26.