DOI QR코드

DOI QR Code

COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링

Monitoring Wheat Growth by COSMO-SkyMed SAR Images

  • 김이현 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 이경도 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 장소영 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 이훈열 (강원대학교 지구물리학과) ;
  • 오이석 (홍익대학교 전자전기공학부)
  • Kim, Yihyun (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Sukyoung (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Kyungdo (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jang, Soyeong (Soil and Fertilizer Management Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Hoonyol (Department of Geophysics, Kangwon National University) ;
  • Oh, Yisok (School of Electronic and Electrical Engineering, Hongik University)
  • 투고 : 2013.01.13
  • 심사 : 2013.02.03
  • 발행 : 2013.02.28

초록

본 연구에서는 COSMO-SkyMed 영상을 이용하여 얻어진 후방산란계수의 밀 생육시기에 따른 변화를 분석하고 생육인자와의 관계를 통하여 밀 생육추정 가능성을 모색하고자 하였다. 2012년도 농촌진흥청 국립식량과학원 시험포장에서 생육시기별로 COSMO-SkyMed 영상자료를 수집하여 후방산란계수를 산출하였고 해당시기에 생체중, 식생수분함량, 건물중, 토양수분등을 조사 및 분석하였다. 생육시기에 따라 HH-편파 후방산란계수가 증가하다가 DOY 129(5월 8일) 때 최대값을 보인 후 감소하였는데 생체중, 식생 수분함량, 건물중 등도 동일한 변화 경향을 보였다. 후방산란계수와 밀 생육인자들과의 관계를 분석한 결과 생체중(r=0.88), 식생수분함량(r=0.87)과 각각 상관계수가 높게 나타났고, 건물중(r=0.80)과도 상관성을 보였지만 토양수분(r=0.18)과는 상관성이 나타나지 않았다. 후방산란계수를 이용하여 밀 생육을 추정을 위한 회귀식을 작성하였는데 생체중($R^2$=0.80), 식생수분함량($R^2$=0.80)에서 각각 결정계수가 높게 나타났다. 본 연구를 통해 COSMO-SkyMed 영상 이용 밀 생육을 추정할 수 있었고 향후 아리랑 5호 위성(KOMPSAT-5)에 활용 가능함을 확인하였다.

We analyzed the relationships between backscattering coefficients of wheat measured by COSMO-SkyMed SAR and biophysical measurements such as biomass, vegetation water content, and soil moisture over an entire wheat growth period. Backscattering coefficients increased until DOY 129 and then decreased along with fresh weight, dry weight, and vegetation water content. Correlation analysis between backscattering and wheat growth parameters revealed that backscatter correlated well with fresh weight (r=0.88), vegetation water content (r=0.87), and dry weight (r=0.80), while backscatter did not correlated with soil moisture (r=0.18). Prediction equations for estimation of wheat growth parameters from the backscattering coefficients were developed.

키워드

참고문헌

  1. Chen, J., H. Lin, and Z. Pei, 2007. Application of ENVISAT ASAR data in mapping rice crop growth in Southern China, IEEE Geoscience Remote Sensing Letter, 4: 431-435. https://doi.org/10.1109/LGRS.2007.896996
  2. Gao, B.C. and A.F.H. Goetz, 1995. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data, Remote Sensing of Environment, 52: 155-162. https://doi.org/10.1016/0034-4257(95)00039-4
  3. Hong, S.Y., S.H. Hong, and S.K. Rim, 2000. Relationship between radarsat backscattering coefficient and rice growth, Korean Journal of Remote Sensing, 16(2): 109-116. https://doi.org/10.7780/kjrs.2000.16.2.109
  4. Italian Space Agency, 2009. COSMO-SkyMed SAR products handbook.
  5. Jackson, T.J. and T.J. Schmugge, 1991. Vegetation effects on the passive microwave emission of soils, Remote Sensing of Environment, 36: 203-212. https://doi.org/10.1016/0034-4257(91)90057-D
  6. Jang, M.W., Y.H. Kim, N.W. Park, and S.Y. Hong, 2012. Mapping paddy rice varieties using multi-temporal RADARSAT SAR images, Korean Journal of Remote Sensing, 28(6): 653-660. https://doi.org/10.7780/kjrs.2012.28.6.5
  7. Kim, Y.H., S.Y. Hong, H.Y. Lee, and J.E. Lee, 2011. Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement, Korean Journal of Remote Sensing, 27(2): 191-201(in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.2.191
  8. Kim, Y.H., S.Y. Hong, and J.E. Lee, 2012. Estimation of soil moisture content from backscattering coefficients using a radar scatterometer, Korean Society of Soil Science and Fertilizer, 45: 127-134(in Korean with English abstract). https://doi.org/10.7745/KJSSF.2012.45.2.127
  9. Kurosu, T., M. Fujita, and K. Chiba, 1995. Monitoring of rice crop growth from space using the ERS-1 C-band SAR, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 1092-1096. https://doi.org/10.1109/36.406698
  10. Le Toan, T., H. Laur, E. Mougin, and A. Lopes, 1989. Multi-temporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images, IEEE Transactions on Geoscience and Remote Sensing, 27(6): 709-718. https://doi.org/10.1109/TGRS.1989.1398243
  11. Lin, H., J. Chen, Z. Pei, S. Zhang, and X. Hu, 2009. Monitoring sugarcane growth using ENVISAT ASAR data, IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2572-2580. https://doi.org/10.1109/TGRS.2009.2015769
  12. Ministry of Education, Science and Technology, 2011. Basic plan for space development promotion.
  13. Moran, M.S., A. Vidal, D. Troufleau, Y. Inoue, and T.A. Mitchell, 1998. Ku- and C-band SAR for discriminating agricultural crop and soil conditions, IEEE Transactions on Geoscience and Remote Sensing, 36: 265-272. https://doi.org/10.1109/36.655335
  14. Shao, Y., X, Fan, H, Lin, J, Xiao, S, Ross, B, Brisco, R, Brown, and G. Staples, 2001. Rice monitoring and production estimation using multi-temporal RADARSAT, Remote Sensing of Environment, 76(3): 310-325. https://doi.org/10.1016/S0034-4257(00)00212-1

피인용 문헌

  1. Mapping the Spatial Distribution of IRG Growth Based on UAV vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.495
  2. RapidEye영상과 선형분광혼합화소분석 기법을 이용한 낙동강 유역의 클로로필-a 농도 추정 vol.30, pp.3, 2013, https://doi.org/10.15681/kswe.2014.30.3.329