• 제목/요약/키워드: Knapsack algorithm

검색결과 76건 처리시간 0.026초

확장된 일반상한제약을 갖는 최대최소 선형계획 배낭문제 (The Maximin Linear Programming Knapsack Problem With Extended GUB Constraints)

  • 원중연
    • 한국경영과학회지
    • /
    • 제26권3호
    • /
    • pp.95-104
    • /
    • 2001
  • In this paper, we consider a maximin version of the linear programming knapsack problem with extended generalized upper bound (GUB) constraints. We solve the problem efficiently by exploiting its special structure without transforming it into a standard linear programming problem. We present an O(n$^3$) algorithm for deriving the optimal solution where n is the total number of problem variables. We illustrate a numerical example.

  • PDF

선수제약 다기간 선형계획 배낭문제 (The Cardinality Constrained Multi-Period Linear Programming Knapsack Problem)

  • 원중연
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.64-71
    • /
    • 2015
  • In this paper, we present a multi-period 0-1 knapsack problem which has the cardinality constraints. Theoretically, the presented problem can be regarded as an extension of the multi-period 0-1 knapsack problem. In the multi-period 0-1 knapsack problem, there are n jobs to be performed during m periods. Each job has the execution time and its completion gives profit. All the n jobs are partitioned into m periods, and the jobs belong to i-th period may be performed not later than in the i-th period, i = 1, ${\cdots}$, m. The total production time for periods from 1 to i is given by $b_i$ for each i = 1, ${\cdots}$, m, and the objective is to maximize the total profit. In the extended problem, we can select a specified number of jobs from each of periods associated with the corresponding cardinality constraints. As the extended problem is NP-hard, the branch and bound method is preferable to solve it, and therefore it is important to have efficient procedures for solving its linear programming relaxed problem. So we intensively explore the LP relaxed problem and suggest a polynomial time algorithm. We first decompose the LP relaxed problem into m subproblems associated with each cardinality constraints. Then we identify some new properties based on the parametric analysis. Finally by exploiting the special structure of the LP relaxed problem, we develop an efficient algorithm for the LP relaxed problem. The developed algorithm has a worst case computational complexity of order max[$O(n^2logn)$, $O(mn^2)$] where m is the number of periods and n is the total number of jobs. We illustrate a numerical example.

단순상한 및 확장된 일반상한제약을 갖는 선형배낭문제의 O($n^2log n$) 해법 (An O($n^2log n$) Algorithm for the Linear Knapsack Problem with SUB and Extended GUB Constraints)

    • 한국경영과학회지
    • /
    • 제22권3호
    • /
    • pp.1-9
    • /
    • 1997
  • We present an extension of the well-known generalized upper bound (GUB) constraint and consider a linear knapsack problem with both the extended GUB constraints and the simple upper bound (SUB) constraints. An efficient algorithm of order O($n^2log n$) is developed by exploiting structural properties and applying binary search to ordered solution sets, where n is the total number of variables. A numerical example is presented.

  • PDF

일반 다중선택 선형배낭문제의 확장문제에 대한 효율적인 해법 (An Efficient Algorithm for an Extension of the Generalized Lienar Multiple Choice Knapsack Problem)

  • 원중영;전싱진
    • 한국경영과학회지
    • /
    • 제17권1호
    • /
    • pp.31-41
    • /
    • 1992
  • An extension of generalized linear multiple choice knapsack problem [1] is presented and an algorithm of order 0([n .n$_{max}$]$_{2}$) is developed by exploiting its extended properties, where n and n$_{max}$ denote the total number of variables and the cardinality of the largest multiple choice set, respectively. A numerical example is presented and computational aspects are discussed.sed.

  • PDF

효과적인 배낭 문제 해결을 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅 (DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem)

  • 김은경;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.730-735
    • /
    • 2005
  • 배낭 문제는 단순한 것 같지만 조합 최적화 문제로서, 다항 시간(polynomial time)에 풀리지 않는 NP-hard 문제이다. 이 문제를 해결하기 위해 기존에는 GA(Genetic Algorithms)를 이용하여 해결하였다. 하지만 기존의 방법은 DNA의 정확한 특성을 고려하지 않아, 실제 실험과의 결과 차이가 발생하고 있다. 본 논문에서는 배낭 문제의 문제점을 해결하기 위해 DNA 컴퓨팅 기법에 DNA 코딩 방법을 적용한 ACO(Algorithm for Code Optimization)를 제안한다. ACO는 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 방법보다 실험적 오류를 최소화하였으며, 또한 적합한 해를 빠른 시간내에 찾을 수 있었다.

수정(修正)된 다중선택(多重選択) 배낭문제(背囊問題)의 해법(解法)에 관한 연구(硏究) (A Study on the Modified Multiple Choice Knapsack Problem)

  • 원중연;정성진
    • 대한산업공학회지
    • /
    • 제9권2호
    • /
    • pp.3-8
    • /
    • 1983
  • The multiple choice knapsack problem is modified. To solve this modified multiple choice knapsack problem, Lagrangian relaxation is used, and to take advantage of the special structure of subproblems obtained by decomposing this relaxed Lagrangian problem, a modified ranking algorithm is used. The K best rank order solutions obtained from each subproblem as a result of applying modified ranking algorithm are used to formulate restricted problems of the original problem. The optimality for the original problem of solutions obtained from the restricted problems is judged from the upper bound and lower bounds calculated iteratively from the relaxed problem and restricted problems, respectively.

  • PDF

일반화된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구 (On a Two Dimensional Linear Programming Knapsack Problem with the Generalized GUB Constraint)

  • 원중연
    • 대한산업공학회지
    • /
    • 제37권3호
    • /
    • pp.258-263
    • /
    • 2011
  • We study on a generalization of the two dimensional linear programming knapsack problem with the extended GUB constraint, which was presented in paper Won(2001). We identify some new parametric properties of the generalized problem and derive a solution algorithm based on the identified parametric properties. The solution algorithm has a worst case time complexity of order O($n^2logn$), where n is the total number of variables. We illustrate a numerical example.

소프트웨어 제품라인의 출시 계획 수립을 위한 탐욕 유전자 알고리듬 (A Greedy Genetic Algorithm for Release Planning in Software Product Lines)

  • 유재욱
    • 산업경영시스템학회지
    • /
    • 제36권3호
    • /
    • pp.17-24
    • /
    • 2013
  • Release planning in a software product line (SPL) is to select and assign the features of the multiple software products in the SPL in sequence of releases along a specified planning horizon satisfying the numerous constraints regarding technical precedence, conflicting priorities for features, and available resources. A greedy genetic algorithm is designed to solve the problems of release planning in SPL which is formulated as a precedence-constrained multiple 0-1 knapsack problem. To be guaranteed to obtain feasible solutions after the crossover and mutation operation, a greedy-like heuristic is developed as a repair operator and reflected into the genetic algorithm. The performance of the proposed solution methodology in this research is tested using a fractional factorial experimental design as well as compared with the performance of a genetic algorithm developed for the software release planning. The comparison shows that the solution approach proposed in this research yields better result than the genetic algorithm.

일반 다중선택 선형배낭문제에 대한 효율적인 해법 (An Efficient Algorithm for the Generalized Multiple Choice Linear Knapsack Problem)

  • 원종연;정성진
    • 한국경영과학회지
    • /
    • 제15권2호
    • /
    • pp.33-44
    • /
    • 1990
  • An efficient algorithm is developed for the linear programming relaxation of generalized multiple choice knaspack problem. The generalized multiple choice knaspack problem is an extension of the multiple choice knaspack problem whose relaxed LP problem has been studied extensively. In the worst case, the computational coimplexity of the proposed algorithm is of order 0(n. $n_{max}$)$^{2}$), where n is the total number of variables and $n_{max}$ denotes the cardinality of the largest multiple choice set. The algorithm can be easily embedded in a branch-and-bound procedure for the generalized multiple choice knapsack problem. A numerical example is presented and computational aspects are discussed.sed.

  • PDF

일반하한제약을 갖는 일반연속 다중선택 선형배낭문제의 해법연구 (The Generalized Continuous Multiple-Choice Linear Knapsack Problem with Generalized Lower Bound Constraints)

  • 원중연
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.291-299
    • /
    • 1998
  • We present a variant for the generalized continuous multiple-choice knapsack problem[1], which additionally has the well-known generalized lower bound constraints. The presented problem is characterized by some variables which only belong to the simple upper bound constraints and the others which are partitioned into both the continuous multiple-choice constraints and the generalized lower bound constraints. By exploiting some extended structural properties, an efficient algorithm of order Ο($n^2$1og n) is developed, where n is the total number of variables. A numerical example is presented.

  • PDF