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The Maximin Linear Programming Knapsack Problem With
Extended GUB Constraints

Joong-Yeon Won

—8 Abstract B

In this paper, we consider a maximin version of the linear programming knapsack problem with extended generalized
upper bound (GUB) constraints. We solve the problem efficiently by exploiting its special structure without transforming
it into a standard linear programming problem. We present an 0(n*) algorithm for deriving the optimal solution where
n is the total number of problem variables. We ilustrate a numerical example.
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1. Introduction

In this paper, we consider the following maxi-
min version of the linear programming (LP) kna-

psack problem with extended GUB constraints :

(P) maximize Z=min ibM{Z/"—N, C,','X,'/'} (1)
subject to 2em E,’ﬂvy AiiXy = b, (2)
Ej;—N‘x,'j < k;, 1€M, (3)

0< x; <1, jeN,, i€ M, (4)

where M={1, -, m} ; the classes N;={1,,
n;} are mutually exclusive ; all cj; aj; b and
k; are positive integer numbers.

Problem (P) arises from the observation that
for the public sector applications, the common
utility can be frequently measured through maxi-
min objective functions. Applications of (P) can
be found in various areas : one example is arisen
in the allocation of government funds to various
departments. Each department has a number of
projects requiring some allocations of funds. The
knapsack constraint (2) restricts total budget to
be spent. The extended GUB constraint (3) with

(4) specifies the upper bound k; on the number

of project to be funded in #th department. The
objective (1) is to maximize the worst depart-
mental sum of benefits accrued from the alloca-
tions of funds. This problem can be formulated
as an integer version of (P). If this integer version
is solved by a branch—and-bound procedure, we
need to solve its LP relaxation of type (P).

The maximum sum version of (P) can be for-
mulated as (P) by replacing the objective func-
tion (1) by

maximize z= 2, y 2N C;i X ©)

The maximum sum versions of (P) have been
considered in Bagchi et al. [1] and Won [10] as
extensions for the LP knapsack problem with or-

dinary GUB constraints. Several important ap-
plications of the maximum sum versions are gi-
ven in Bagchi et al. [1]. Bagchi et al. [1] and Won
[10] provide efficient algorithms of time com-
plexity O(»”log»), where # is the total number
of problem variables.

The LP knapsack problem with ordinary GUB
constraints can be formulated as (5), (2), (4) and
replacing (3) by

Zj:».N’x,'j:l, ieM. (6)

Specialized algorithms for this problem have
been developed in many papers, see the survey
by Dudzinski and Walukiewicz [4]. Glover (6]
provide O(nlogn) algorithm for this problem.
Dyer (5], Zemel [12], and Pisinger [9] provide
O(n) algorithms.

It is well known that problem (P) can be trans-
formed into a standard LP problem by intro-
ducing m additional constraints. However, it is
not desirable computationally as it increases the
size of problem (P) and furthermore the addi-
tional constraints affect the underlying special
structure of (P),

In this paper, we suggest a solution algorithm
that efficiently exploits the special structure of
(P). In section 2, we first consider m subpro-
blems, which are obtained by allocating the re-
source b toeach subsystem of (P). The ith sub-
system consists of all variables x;, j€ N;, the
corresponding part of the objective function, the
knapsack constraint, and the extended GUB
constraint. Subproblems can be extensions of the

cardinality constrained LP knapsack problem [2,
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3]. We identify some parametric properties in
subproblems and present a parametric algorithm
to derive the optimal objective function in
changes of the allocated resource. The parametric
algorithm has a time complexity of O(#% log #;).
In section 3, we first present an allocation
problem (AP) which is equivalent to problem (P).
The optimal solutions of (P) can easily be found
from the optimal allocations of (AP). Then, we
describe a solution algorithm for (P) by using the
optimal objective functions derived from the sub-
problems in section 2. The solution algorithm for
(P) has a time complexity of O(x*). Finally in

section 4, we give a numerical example.

2. LP Knapsack Problem With
Cardinality Constraint

In this section, we will consider the following
subproblem (ECP).

(ECPD) z;(b;)= maximize 2.y c;x; (7)
subject to Xen a;x;< by, (8)

Sen ki< ki, (9)

0<x,<l,jeN;, (10

We will assume temporarily that the allocated re-
source b; 1s a known parameter. We also assume
that the variables within each class N; are sort-
ed so that a; < a;, if 7,<j, for each i€ M.

Subproblem (ECPi) is an extension of the
cardinality constrained LP knapsack problem (2,
3]. The cardinality constrained LP knapsack
problem (CP) can be formulated by replacing (9)
by (6) in (ECP{). Campello and Maculan [2] di-

scuss some properties of basic feasible solutions
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AR A S ) 97

of (CP) and prove that there exists an O(#n?)
algorithm for solving (CP). Dudzinski [4] shows
that (CP) can be solved in O(#»?) by solving at
most #; ordinary LP knapsack problems. How -
ever, their algorithms cannot be adapted to a
parametric procedure for obtaining the optimal
objective values as &; in (ECP1) is changed. We
present a parametric algorithm to obtain the
optimal objective function z,”(5;). This function
will be used in section 3 to find the optimal
solution of (P).

Note that a basic feasible solution to (CP)
always has two fractional components [2]. How-
ever, observe that a basic feasihle solution to
(ECPi) can have one or two fractional com-
ponents. (Refer to [11).) In both problems the
sum of these two fractional components is
always equal to 1.

Define the slope 6,(J,,7,) associated with x;

and x; as

5/“1 ,jg)E (ijk‘ czjl)/(aij,—— di,'.:) ,
71 < Js, 51 € N;UH{O), 72 €N, . (11

For notational convenience, define ¢, =a,,=0.
In case of j;=0 in equation (11), the slope
6,0, 7)) = cylay; is associated with only one
variable x;,. The variable x, can be a slack
variable for constraint (9). If a;, = ay;,, ,(jy, j»)
1s defined to be a large number.

Let x” be an optimal solution with all integer
components, where b; is equal to b/=3,.5
a;xy. Let J;be the index set of variables having

the value 1 in a basic feasible solution to (ECP).
Observe that | J;| <k, always holds. The fol-
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lowing theorem 1 identifies some parametric pro-
perties of (ECPi).

Theorem 1. As the value of b, increases from
8" by a small amount, the optimal objective value
of (ECPi) increases along the slope 8;(f1, /)
determined by the following :

0i(f1 ,fz) =

max jF—N,\],{‘gi(O,j)}, if ']il <k,
MaxX j,e; MAX =Ny, 04 L0 (1, 72)),
if I];‘ =k;,

where f, and f, are indices of variables taking
fractional values.
Proof. As the value of b; increases from 5’ by

a small amount «a, the optimal objective value

increases as follows :
2B+ ) =z2{b)) +acsgB e

where B is a 2x2 basis matrix consisted of two
column vectors from constraint (8) and (9), czis
a benefit vector corresponding to B, and e=
(1,0)". There arise two cases. Case (). If |J; |

< k;, the current integer optimal solution x° sati-
sfies the constraint (9) by strict inequality. So,
one variable x; belonging to N;\ J, (currently
having value 0) must be selected to have frac-
tional value, while variables x; belonging to J;
(currently having value 1) should be fixed at their
current values. The basis B for this case cor-

responds to a basic vector (x;,x ;), where x
is a slack variable for constraint (9), and cg=

(¢;,0). Hence,

2 (B +a) =z,(8)) +alcglay)
=z,() + 80, 7).

do
ofk

i

Therefore, the slope of maximal increase in
objective value is determined by

9i(f1,f2)= max jeN,\],{Hi(O,j)}. (12)

Case (ii). If | J; | = &, the current integer optimal

solution satisfies the constraint (9) by equality.

So, one variable x; belonging to J; (currently

having value of 1) must decrease to have frac-

tional value and one variable x;;, such that 7»> j,
and j,< N;\J; must increase from current value

0. Note that the sum of these two variables is
equal to 1 and a;<a,,. So, the basis B for this

case corresponds to a basic vector (xy,,x;;,) and

cg=(c;, ¢;,). Hence,

Z,—(b9+ a)= Z,‘(b?) + (I(Cijf’ Cij, )/(di;‘. —ag,)
=Z,~(b?)+a/0,-(f1 ,fz).

Therefore, the slope of maximal increase in

objective value is determined by

0:(f1,f2) = max ; c; max ; ey, i 18,0, j2)}
(13)

From the equation (12) and (13), theorem 1 holds.

The maximal increment of b, where the new
basis remains optimal is @ ;,— a . In case of
| J:1<k;, the value of x; reaches 1 as b; in-
creases up to a;, . (Note that a ,, =0 if 7,=0.)
Then, the index f, is added to J. In case of
| J:1=k;, the value of x ; drops down to 0 and
that of x ;, reaches 1, as b, increases up to
a,— ay. So, the index f; is added to J; and
f1 is deleted from J,.
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It is well known that the optimal ohjective
function z,"(#;) is a piecewise linear nonde-
creasing concave. So, z;°(b;) can be represented
by a sequence of nonincreasing slopes 61(7,,72).
The magnitude of interval of &; corresponding
to 6,{(j;, 72} is ay; — a;. The following para-
metric algorithm selects only the optimal slopes
from the list of all possible candidate slopes. The

parametric algorithm terminates when there are

no more slopes left in the candidate hst, CL,.
Note also that we need only nonnegative slopes
since the optimal objective values cannot
decrease as b; increases. The output of
parametric algorithm is the list L; of optimal
slopes, which constitute the optimal objective

function z;°(b;).

Parametric Algorithm

StepQ. CL;<~ ¢, L, ¢, ], —¢.

Step 1. Reorder the variables according to non-
decreasing a; values so that ¢, <a;,
whenever j,<Jj,.

Compute all slopes
(9,'(]'1,].2)2(6‘,7,*Ci;‘g)/(a,’]—,“a,’/,), for
H<jy, HEN; U0}, ieN;,

where ¢ ;= a=0. Put only nonnega-
tive slopes into the candidate list CL; in
nonincreasing order.

Step 2. Select the first slope 6,(j,,/.) in CL.
If CL,= ¢, stop the procedure. The list
L; is the desired output.

If | J;1< &, go to step 3. Otherwise, go to
step 4.

Step3. If j,=0,set L, —L;U{8,(j,,7»} and
J; <=7, J{s}. Go to step b.
Stepd. If ji=J; and j, €N\ J,, set
L, <~ L;U{84,7;)} and
Ji— ;UL N AL
Go to step 5.
Steph.Set CL; < CL;\{8{/1,72)}.
Go to step 2.

Theorem 2. The time complexity of parametric
algorithm is O(nlog#;).

Proof. Step 0 is an initialization and requires only
constant effort. In step 1, reordering the variables
can be accomplished in O(n;log#n;) time. The
computation of all slopes is carried out in O(#3)
operations and the ordering of these slopes in
CL, is accomplished in O(#%log#;) time. So,
step 1 requires overall Of n?logn,) effort. Step
2 and step 5 need only constant effort. Each
execution of step 2 must be followed by an
execution of either step 3 or step 4, then by that
of step 5. After each execution of step 5, one slope
is deleted from CL,. Since the total number of
slopes in CL; (in step 2) is O(#%), step 3 and
step 4 can be executed at most O(7?). Consider
a particular execution of step 3 or step 4. In step
3, insertion of jy into J; in increasing order
requires only O(logn;) effort by using the
binary search method [8]. In step 4, in identifying
whether j, and j, belong to corresponding set
or not, O(log »;) examinations are required, and
each insertion and deletion can be carried out in
O(log n;) operations by using the binary search

method. So, the particular execution from step 2
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to step 5 requires OClog n,) effort and hence the
main iterative steps, from step 2 to step 5,
requires overall O(x?logn;) efforts. Therefore,
it follows that the overall complexity of para-

metric algorithm is O(n‘logn;). ®

3. The Solution Algorithm

Problem (P) can be decomposed into m
subproblems (ECP{), ie M, by allocating the
resource b to each subsystem of (P). Therefore,
problem (P) is equivalent to the following allo~-
cation problem (AP).

(AP) maximize z=min .y {2;(8;)}
subject t0 Xy b, < b,
b;20,ie M,

where each objective function z;(b;) can be
obtained by applying the parametric algorithm (in
section 2) to each subproblem (ECPQ). To solve
problem (P), we first find the optimal allocations
b of b in (AP). Then, the optimal solution of
(P) can easily be derived from the optimal al-
locations b}, ie M.

Observe that the optimal objective value of
(AP) has the same value as that of each sub-
problem by the maximin objective in (AP) [8].

Therefore, the optimal allocations &} to each
subproblem should be such that z"=z{=-=
2, where z" is the optimal objective values of
(AP). In finding optimal allocations b}, 1€ M, we
only need to keep track of the optimal slopes
8:(7;,72) from each L, ie M. Now, we des-

cribe the solution algorithm for (P) in the fol-
lowing way.

Solution Algorithm

Step0. z <=0, b <0, J; < ¢, 4b; <0,
Li—¢,ieM

Step 1. Obtain lists L, 7= M, by applying the
parametric algorithm to each subproblem
(ECPi).

Step 2. Choose the first slope #{7,, 7») fram each
L, ieM. Set db;=a;,—a;, €M

Step 3. Compute  dz, = 6,(j,, i) *4b,, i€ M,

Az ;= min .y {4z},

i=arg min =y {dz;}, 2=z2+4dz;.

If there are several dz;, choose one arbi-
trarily.

Step 4. Compute b= b+ 3 ;o p {d2-/6,(j,, 7))

Step 5. If &= b, compute the optimal objective
value 2° as
2=z (b= ONE e (/01,7
Go to step 8, and find an optimal solution
to (P).

Otherwise, compute

Ab;= Ab,— A2;/6:(4),7s), ie M.

Set L; < L\65(j1,7)}, and go to
step 6.

Step 6. If L= ¢, the optimal objective value 2"
is z. Go to step 8 and find an optimal
solution to (I?).

Otherwise, update J; as following and go
to step 7.
If 170 <ky, Ty T, U
Otherwise, J; < J U{7N AL

Step 7. Choose the first slope 8-(j,,/s) from

L..

Compute 4b; < a3, —a . Go to step 3.
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Step 8. The optimal solution to (P) can he ob-
tained as follows :
For 7 such that 7,#0 in 8;(j1,js),
x5, = (2" =2 €5 — i)/
(ciy— ¢y
x5 =1—x5,
x;=1, 7€ J\M/,
x;=0, 7& NA T\ {72,
For ¢ such that /,=0 in 6.,(j,7),
x5, = ("= Zjey cp)cy,
=177,

x;=0, 7€ N\J\ {7}

The solution algorithm starts the allocation

procedure from b;=0, i€ M, and hence z=1.
Next, it chooses the first slope 8,(;7,,7.) that is
the largest one in each L, ie= M. Then, it in-
creases the objective value z along the chosen
slopes 6,(j,,7:) until a break point with the
smallest objective value 4z ;= min ;. {dz;} is
reached, where 4z,= 0,(j,,j.)*(a; —a;), is
M. Note that each z,(b;) is a plecewise linear

nondecreasing concave function with a number
of break points. The additional allocations to each

subproblem are computed by 4z /8, ,j:), i€
M. If the current total allocation b=,
dz+/8,(j;,72) is greater than or equal to b, the

optimal solutions to (P) can be derived in this
step. Otherwise, it increases the objective value
z again until the next break point is reached. And

then, it iterates the same procedures.

Theorem 3. The time complexity of the main
algorithm for (P) is O(»*).

A 101

Proof. Step 0 requires constant effort. In step 1,
each list L, can be obtained by applying the
parametric algorithm in O(#%log#;) time, to-
taling £,y K nilogn,)<O(n’logn) time. In
step 2, choosing each largest slopes from all L,
1€ M, and computing 4b;, ie M, require overall
O(m) effort. In step 3, dz,, ie M, 4z and Zz
can he computed in O(m) operations and
comparisons. In step 4, & is computed in O(m)
operations. In step 5, computations of z*, 46,
and deletion of the slope from list L; can be
carried out in O(m) operations. In step 6,
insertion and deletion can be carried out in
O(logn;) < O(logn) operations by using the
binary search method {8]. Step 7 requires
constant effort. So, particular executions from
step 3 to step 7 require maxt O(m), O(logn)}
< =) effort. Since the total number of slopes
in all lists is (#*) and each execution of step
5 delete one slope from some list, executions from
step 3 to step 7 can be run at most O(n?) times.
So, the total iterations from step 3 to step 7
require O(»’) efforts. The optimal solution in
step 8 can be obtained in O(n) operations.
Therefore, it follows that the overall complexity
of main algorithm is max{ X »’logn), O(n"))

< O(n®) effort. m

4. Numerical Example

Consider the maximin LP knapsack problem
with {wo extended GUB constraints, where M=
{1,2}, Ni={1,....68}, ieM, 6=20, k=2,

ky=2.The values of ¢; and a; are as follows :
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i 1 2

i 1 2 3 45 611 2 3 456
c; 17 5 12 1115 17} 3 8 11 9 13 14
a; | 24 5 8 9 131 2 56912

<Iteration 1>

Step 0. z <0, b0, ], ¢, 4b; 0,
Li—¢,is(1,2}.

Stepl. L, ={6,(0,1)=3.5, 8,(0,3)=2.4,

6,(1,5)=1.143, 6,(3,6)=0.625}
Loy=16,0,2)=4, 6,(0,1)=3,

0,(1,3)=2, 6,(2,5)=0.714,

62(3,6)=10.429}.

Step 2. 6,{(0,1)=23.5 is selected from L,
6,0, 2)=4 is selected from L,
dbi=ay —apg=2, dby=axn—ay=2.

Step 3. dz,= 6,(0, D*4b; =17,

Azy= 6,(0,2)* b, =8,
dz,=min{7,8}=7(=4z,), i=1,
z=z+d4dz;=1.

Stepd. b=0+7/3.5+7/4=3.75.

Step5. Since 6< b, Ab=2—-7/3.5=0,

dby=2—7/4=0.25, L1 < L\{6,(0,D}.

Step6.Since L,+¢ and | J; | (=0) < ki (=2),

Ji< {1}
Step 7. 6,(0,3)=2.4 is selected from L,

Ablzalg—am= 5, go to step 3.

<Iteration 2>

Step 3. dz)= 61(0,3)*db, =12,
dzy= 05(0,2)%dby =1,
dz+=min{i2, 1) = I(= dzy), i=2,

z=T7+1=8.

Step4. b=3.75+1/2.4+1/4=4.417.

Step5. Since b<b, Aby=5—1/2.4=14.583,
Aby=0.25—1/4=0, Ly — L\{6x(0,2)}.

Step 6. Since Ly=¢ and | L I(=0)<{k(=2),
Jo < {2}.

Step7. 64(0,1)=23 is selected from Lo,

Aby= ay — axn=1, go to step 3.

<Iteration 3>

Step 3. dz = 6,(0,3)*db; =11,
dzy= 6,(0,1)* by =3,
4z = min{11,3} =3(=4z,), i=2,
z=8+3=11.

Step4. 6=4.417+3/2.4+3/3=6.667.

Step5. Since 6<b, 4b;=4.583—3/2.4=3.33,
Aby=1-3/3=0, Ly < L)\{6:(0,1)}.

Step6. Since Lo#+¢ and | LI(=1)<{k(=2),
S (1,21

Step 7. 6,(1,3)=2 is selected from L,

Aby= axn—ay=5~1=4, go to step 3.

<Iteration 4>
Step 3. dz,= 6,(0,3)*db, =38,
dzy= (1, 3)*db, =8,
4z ;= min{8,8} =8(=4dz; or dz,),

It

i=1, z=11+8=19.

Step4. b=6.667+8/2.4+8/2=14.

Step5. Since #<b, 4b,=3.33—8/2.4=0,
Ab,=4—-8/2=0, L, — L \6,(0,3)}.

Step6. Since L,#*¢ and | /(=1 {k(=2),
Jo < {1,3}.

Step7. 6,(1,5)=1.143 is selected from L;,

i
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4by=a;;—~a;=9—2=17, go to step 3.

<lteration 5>
Step 3. Az;= 51(1,5)*Ab1:8,
Azy= 85(1,3)* by =0,

dz; = min {8,0} =0(=4dz,), i=2,
Z2=19+0=19.

Stepd. b=14+0/1.143+0/2=14.

Step5. Since 5<b, db;=7-0/1.143=1,
Aby=0—0/2=0, Ly < L)\{6,(1,3)}.

Step6. Since Lo#¢ and | L(=2)=k(=2),
J. —12,3).

Step7. 65(2,5)=0.714 is selected from L.,

Adby= as—ap=9—2=17, go to step 3.

<Iteration 6>

Step 3. dz,= 6,(1,5)*4b,=8,
Azy= 04(2,5)* dby =5,
4z ;= min {8,5} =5(=dz,), =2,
2=19+5=24.

Step4. b=14+5/1.143+5/0.714=25.38,

Step 5. Since (= 25.38)> & (= 20), the optimal
objective value is

2'= 24—(25.38—20)/(1/1.143
+1/0.714)= 21.636.

Step 8. The optimal solution to (P) is as follows :
x13=1(21.636 — 12— 15)/(7 - 15) = 0.67,
x5=1-0.67=0.33,
=1, x;=0, 7=2,4,6,
x=1(21.636 — 11 —13)/(8 — 13) = 0.473,
x5=1—0.473=0.527,

XZ3=1, xg,:O, j:1,4,6,

5. Conclusions

This paper suggests a maximin version (P) for
the linear programming knapsack problem with
extended generalized upper bound constraints [1,
10]. To solve problem (P), we introduce a pa-
rametric allocation of the knapsack right-hand
side in (P). Each subproblem obtained from the
parametric allocation is an extension of the car-
dinality constrained linear programming knap-
sack problem [2, 3].

First, we identify some parametric properties
in each subproblem and then describe a para-
metric algorithm to obtain the optimal objective
function of each subproblem as the knapsack
allocation is changed. The parametric algorithm
has the time complexity of O(#%logn;), where
n; is the number of variables in each subpro-
blem. Next, using the optimal objective functions
of subproblems, we have developed the solution
algorithm for (P). The time complexity of solu-
tion algorithm is of order O(#%), where # is the

total number of problem variables.
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