• Title/Summary/Keyword: Kirchhoff equation

Search Result 87, Processing Time 0.021 seconds

EXPONENTIAL DECAY FOR THE SOLUTION OF THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.69-84
    • /
    • 2018
  • In this paper, we study the viscoelastic Kirchhoff type equation with a nonlinear source for each independent kernels h and g with respect to Volterra terms. Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

STABILIZATION FOR THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH A NONLINEAR SOURCE

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • In this paper, we study the viscoelastic Kirchhoff type equation with a nonlinear source $$u^{{\prime}{\prime}}-M(x,t,{\parallel}{\bigtriangledown}u(t){\parallel}^2){\bigtriangleup}u+{\int}_0^th(t-{\tau})div[a(x){\bigtriangledown}u({\tau})]d{\tau}+{\mid}u{\mid}^{\gamma}u=0$$. Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

ASYMPTIOTIC BEHAVIOR FOR THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH AN INTERNAL TIME-VARYING DELAY TERM

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.399-412
    • /
    • 2016
  • In this paper, we study the viscoelastic Kirchhoff type equation with the following nonlinear source and time-varying delay $$u_{tt}-M(x,t,{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\int_{0}^{t}}h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\+{\parallel}u{\parallel}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

EXPONENTIAL STABILITY FOR THE GENERALIZED KIRCHHOFF TYPE EQUATION IN THE PRESENCE OF PAST AND FINITE HISTORY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.32 no.5
    • /
    • pp.659-675
    • /
    • 2016
  • In this paper, we study the generalized Kirchhoff type equation in the presence of past and finite history $$\large u_{tt}-M(x,t,{\tau},\;{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^t}\;h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\\hspace{25}-{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{-{\infty}}}^t}\;k(t-{\tau}){\Delta}u(x,t)d{\tau}+{\mid}u{\mid}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the expoential decay rate of the Kirchhoff type energy.

Rotor High-Speed Noise Prediction with a Combined CFD-Kirchhoff Method (CFD와 Kirchhoff 방법의 결합을 이용한 로터의 고속 충격소음 해석)

  • 이수갑;윤태석
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.607-616
    • /
    • 1996
  • A combined computational fluid dynamics(CFD)-Kirchhoff method is presented for predicting high-speed impulsive noise generated by a hovering blade. Two types of Kirchhoff integral formula are used; one for the classical linear Kirchhoff formulation and the other for the nonlinear Kirchhoff formulation. An Euler finite difference solver is solved first to obtain the flow field close to the blade, and then this flow field is used as an input to a Kirchhoff formulation to predict the acoustic far-field. These formulas are used at Mach numbers of 0.90 and 0.95 to investigate the effectiveness of the linear and nonlinear Kirchhoff formulas for delocalized flow. During these calculiations, the retarded time equation is also carefully examined, in particular, for the cases of the control surface located outside of the sonic cylinder, where multiple roots are obtained. Predicted results of acoustic far-field pressure with the linear Kirchhoff formulation agree well with experimental data when the control surface is at the certain location(R=1.46), but the correlation is getting worse before or after this specific location of the control surface due to the delocalized nonlinear aerodynamic flow field. Calculations based on the nonlinear Kirchhoff equation using a linear sonic cylinder as a control surface show a reasonable agreement with experimental data in negative amplitudes for both tip Mach numbers of 0.90 and 0.95, except some computational integration problems over a shock. This concliudes that a nonlinear formulation is necessary if the control surface is close to the blade and the flow is delocalized.

  • PDF

ENERGY DECAY ESTIMATES FOR A KIRCHHOFF MODEL WITH VISCOSITY

  • Jung Il-Hyo;Choi Jong-Sool
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.245-252
    • /
    • 2006
  • In this paper we study the uniform decay estimates of the energy for the nonlinear wave equation of Kirchhoff type $$y'(t)-M({\mid}{\nabla}y(t){\mid}^2){\triangle}y(t)\;+\;{\delta}y'(t)=f(t)$$ with the damping constant ${\delta} > 0$ in a bounded domain ${\Omega}\;{\subset}\;\mathbb{R}^n$.

POSITIVE SOLUTION AND GROUND STATE SOLUTION FOR A KIRCHHOFF TYPE EQUATION WITH CRITICAL GROWTH

  • Chen, Caixia;Qian, Aixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.961-977
    • /
    • 2022
  • In this paper, we consider the following Kirchhoff type equation on the whole space $$\{-(a+b{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}\;{\mid}{\nabla}u{\mid}^2dx){\Delta}u=u^5+{\lambda}k(x)g(u),\;x{\in}{\mathbb{R}}^3,\\u{\in}{\mathcal{D}}^{1,2}({\mathbb{R}}^3),$$ where λ > 0 is a real number and k, g satisfy some conditions. We mainly investigate the existence of ground state solution via variational method and concentration-compactness principle.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Investigation on Derivation of the Dual Integral Equation in the Spectral Domain from Wiener-Hopf Integral Equation (Wiener-Hopf 적분방정식으로부터 파수영역에서의 쌍적분 방정식 유도에 관한 검토)

  • 하헌태;라정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.8-14
    • /
    • 1998
  • The derivation of the dual integral equation in the spectral domain, which has total fields of the interfaces as unknowns, is investigated. It is analytically shown that the derivation of the dual integral equation is equivalent to deriving the Helmholtz-Kirchhoff integral equation from the Wiener-Hopf integral equation.

  • PDF