• Title/Summary/Keyword: Kirchhoff

Search Result 291, Processing Time 0.023 seconds

Truncated hierarchical B-splines in isogeometric analysis of thin shell structures

  • Atri, H.R.;Shojaee, S.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.171-182
    • /
    • 2018
  • This paper presents an isogeometric discretization of Kirchhoff-Love thin shells using truncated hierarchical B-splines (THB-splines). It is demonstrated that the underlying basis functions are ideally appropriate for adaptive refinement of the so-called thin shell structures in the framework of isogeometric analysis. The proposed approach provides sufficient flexibility for refining basis functions independent of their order. The main advantage of local THB-spline evaluation is that it provides higher degree analysis on tight meshes of arbitrary geometry which makes it well suited for discretizing the Kirchhoff-Love shell formulation. Numerical results show the versatility and high accuracy of the present method. This study is a part of the efforts by the authors to bridge the gap between CAD and CAE.

EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRÖ DINGER SYSTEMS WITH STEEP POTENTIAL WELL

  • Lu, Dengfeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.661-677
    • /
    • 2015
  • In this paper, we consider the following Kirchhoff-type Schr$\ddot{o}$dinger system $$\{-\(a_1+b_1{\int}_{\mathbb{R^3}}{\mid}{\nabla}u{\mid}^2dx\){\Delta}u+{\gamma}V(x)u=\frac{2{\alpha}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha-2}u{\mid}v{\mid}^{\beta}\;in\;\mathbb{R}^3,\\-\(a_2+b_2{\int}_{\mathbb{R^3}}{\mid}{\nabla}v{\mid}^2dx\){\Delta}v+{\gamma}W(x)v=\frac{2{\beta}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha}{\mid}v{\mid}^{\beta-2}v\;in\;\mathbb{R}^3,\\u,v{\in}H^1(\mathbb{R}^3),$$ where $a_i$ and $b_i$ are positive constants for i = 1, 2, ${\gamma}$ > 0 is a parameter, V (x) and W(x) are nonnegative continuous potential functions. By applying the Nehari manifold method and the concentration-compactness principle, we obtain the existence and concentration of ground state solutions when the parameter ${\gamma}$ is sufficiently large.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

  • Che, Guofeng;Chen, Haibo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1551-1571
    • /
    • 2020
  • This paper is concerned with the following Kirchhoff-Schrödinger-Poisson system $$\begin{cases} -(a+b{\displaystyle\smashmargin{2}\int\nolimits_{\mathbb{R}^3}}{\mid}{\nabla}u{\mid}^2dx){\Delta}u+V(x)u+{\mu}{\phi}u={\lambda}f(x){\mid}u{\mid}^{p-2}u+g(x){\mid}u{\mid}^{p-2}u,&{\text{ in }}{\mathbb{R}}^3,\\-{\Delta}{\phi}={\mu}{\mid}u{\mid}^2,&{\text{ in }}{\mathbb{R}}^3, \end{cases}$$ where a > 0, b, µ ≥ 0, p ∈ (1, 2), q ∈ [4, 6) and λ > 0 is a parameter. Under some suitable assumptions on V (x), f(x) and g(x), we prove that the above system has at least two different nontrivial solutions via the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Some recent results from the literature are improved and extended.

ON SOLVABILITY OF THE DISSIPATIVE KIRCHHOFF EQUATION WITH NONLINEAR BOUNDARY DAMPING

  • Zhang, Zai-Yun;Huang, Jian-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.189-206
    • /
    • 2014
  • In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation $$u_{tt}-M({\parallel}{\nabla}u{\parallel}^2){\triangle}u+{\alpha}u_t+f(u)=0\;in\;{\Omega}{\times}[0,{\infty}),\\u(x,t)=0\;on\;{\Gamma}_1{\times}[0,{\infty}),\\{\frac{{\partial}u}{\partial{\nu}}}+g(u_t)=0\;on\;{\Gamma}_0{\times}[0,{\infty}),\\u(x,0)=u_0,u_t(x,0)=u_1\;in\;{\Omega}$$ with nonlinear boundary damping by Galerkin approximation benefited from the ideas of Zhang et al. [33]. Furthermore,we overcome some difficulties due to the presence of nonlinear terms $M({\parallel}{\nabla}u{\parallel}^2)$ and $g(u_t)$ by introducing a new variables and we can transform the boundary value problem into an equivalent one with zero initial data by argument of compacity and monotonicity.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLINEAR SCHRÖDINGER-KIRCHHOFF-TYPE EQUATIONS

  • CHEN, HAIBO;LIU, HONGLIANG;XU, LIPING
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.201-215
    • /
    • 2016
  • In this paper, we consider the following $Schr{\ddot{o}}dinger$-Kirchhoff-type equations $\[a+b\({\int}_{{\mathbb{R}}^N}({\mid}{\nabla}u{\mid}^2+V(x){\mid}u{\mid}^2)dx\)\][-{\Delta}u+V(x)u]=f(x,u)$, in ${\mathbb{R}}^N$. Under certain assumptions on V and f, some new criteria on the existence and multiplicity of nontrivial solutions are established by the Morse theory with local linking and the genus properties in critical point theory. Some results from the previously literature are significantly extended and complemented.

Spectral Analysis of Arrayed Waveguide Grating (Arrayed Waveguide Grating의 스펙트럼해석)

  • Jung, Jae-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.121-127
    • /
    • 2004
  • We performed the spectrum analysis of arrayed waveguide grating using Fresnel Kirchhoff diffraction formula and its approximated Fraunhofer diffraction equation and applied both methods to 16 channel and 40 channel models. We presented the spectra and found out the limitations of Fraunhofer diffraction in analysis of arrayed waveguide grating and compared the errors coming from Fraunhofer diffraction approximation and due to imperfection during the fabrication process.

  • PDF

An improved kirchhoff approximation for radar scattering from rough surfaces (거친 표면 레이다 산란 해석을 위한 개선된 Kirchhoff 근사 방법)

  • Oh, Yisok
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.45-52
    • /
    • 1995
  • A new Kirchhoff approximation(KA) method was proposed for microwave scttering from randomly rough surfaces. Using the spectral representation of delta function and its sifting theorem, a new KA was formulated directly without any further approximation, and this formulated was used to compute exact backscttering coefficients. The validity of the KA was verified by a numerical method, and this new KA technique was used to evaluate the existing approximated KkA methods; i.t., the zeroth-order and the first-order approximated physical optics(PO) models. It was shown that the first-order approximated PO model has small error than the zeroth-order approximated PO model at low incidence angles and the opposite happens at higher incidence angles. This new KA model can be used to compute exact scattering coefficients in the validity regions of KA and to evaluate other theoretical and numerical models for scattering from randomly rough surfaces.

  • PDF

POSITIVE SOLUTIONS TO p-KIRCHHOFF-TYPE ELLIPTIC EQUATION WITH GENERAL SUBCRITICAL GROWTH

  • Zhang, Huixing;Zhang, Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1023-1036
    • /
    • 2017
  • In this paper, we study the existence of positive solutions to the p-Kirchhoff elliptic equation involving general subcritical growth $(a+{\lambda}{\int_{\mathbb{R}^N}{\mid}{\nabla}u{\mid}^pdx+{\lambda}b{\int_{\mathbb{R}^N}{\mid}u{\mid}^pdx)(-{\Delta}_pu+b{\mid}u{\mid}^{p-2}u)=h(u)$, in ${\mathbb{R}}^N$, where a, b > 0, ${\lambda}$ is a parameter and the nonlinearity h(s) satisfies the weaker conditions than the ones in our known literature. We also consider the asymptotics of solutions with respect to the parameter ${\lambda}$.

A Comparative Study on the Displacement Behaviour of Triangular Plate Elements (삼각형 판 요소의 변위 거동에 대한 비교 연구)

  • 이병채;이용주;구본웅
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 1992
  • Static performance was compared for the triangular plate elements through some numerical experiments. Four Kirchhoff elements and six Mindlin elements were selected for the comparison. Numerical tests were executed for the problems of rectangular plates with regular and distorted meshes, rhombic plates, circular plates and cantilever plates. Among the Kirchhoff 9 DOF elements, the discrete Kirchhoff theory element was the best. Element distortion and the aspect ratio were shown to have negligible effects on the displacement behaviour. The Specht's element resulted in better results than the Bergan's but it was sensitive to the aspect ratio. The element based on the hybrid stress method also resulted in good results but it assumed to be less reliable. Among the linear Mindlin elements, the discrete shear triangle was the best in view of reliability, accuracy and convergence. Since the thin plate behaviour of it was as good as the DKT element, it can be used effectively in the finite element code regardless of the thickness. As a quadratic Mindlin element, the MITC7 element resulted in best results in almost all cases considered. The results were at least as good as those of doubly refined meshes of linear elements.

  • PDF

Existence of Solutions for a Class of p(x)-Kirchhoff Type Equation with Dependence on the Gradient

  • Lapa, Eugenio Cabanillas;Barros, Juan Benito Bernui;de la Cruz Marcacuzco, Rocio Julieta;Segura, Zacarias Huaringa
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.533-546
    • /
    • 2018
  • The object of this work is to study the existence of solutions for a class of p(x)-Kirchhoff type problem under no-flux boundary conditions with dependence on the gradient. We establish our results by using the degree theory for operators of ($S_+$) type in the framework of variable exponent Sobolev spaces.