DOI QR코드

DOI QR Code

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLINEAR SCHRÖDINGER-KIRCHHOFF-TYPE EQUATIONS

  • CHEN, HAIBO (SCHOOL OF MATHEMATICS AND STATISTICS CENTRAL SOUTH UNIVERSITY) ;
  • LIU, HONGLIANG (SCHOOL OF MATHEMATICS AND STATISTICS CENTRAL SOUTH UNIVERSITY) ;
  • XU, LIPING (SCHOOL OF MATHEMATICS AND STATISTICS CENTRAL SOUTH UNIVERSITY)
  • Received : 2014.10.11
  • Published : 2016.01.01

Abstract

In this paper, we consider the following $Schr{\ddot{o}}dinger$-Kirchhoff-type equations $\[a+b\({\int}_{{\mathbb{R}}^N}({\mid}{\nabla}u{\mid}^2+V(x){\mid}u{\mid}^2)dx\)\][-{\Delta}u+V(x)u]=f(x,u)$, in ${\mathbb{R}}^N$. Under certain assumptions on V and f, some new criteria on the existence and multiplicity of nontrivial solutions are established by the Morse theory with local linking and the genus properties in critical point theory. Some results from the previously literature are significantly extended and complemented.

Keywords

References

  1. C. O. Alves, F. J. S. A. Correa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), no. 1, 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
  2. T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. 28 (1997), no. 3, 419-441. https://doi.org/10.1016/0362-546X(95)00167-T
  3. V. Benci and D. Fortunato, An eigenvalue problem for the Schrodinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283-293. https://doi.org/10.12775/TMNA.1998.019
  4. K. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Boston, Basel, Berlin, 1993.
  5. P. Chen and C. Tian, Infinitely many solutions for Schroginger-Maxwell equations with indefinite sign subquadratic potentials, Appl. Math. Comput. 226 (2014), 492-502.
  6. B. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 (2009), no. 8, 4883-4892. https://doi.org/10.1016/j.na.2009.03.065
  7. L. Duan and L. Huang, Infinitely many solutions for sublinear Schroginger-Kirchhofftype equations with general potentials, Results Math. 66 (2014), no. 1-2, 181-197. https://doi.org/10.1007/s00025-014-0371-9
  8. X. He and W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009), no. 3, 1407-1414. https://doi.org/10.1016/j.na.2008.02.021
  9. X. He, Existence and concentration behavior of positive solutions for a Kirchhoff equations in $R^3$, J. Differential Equations 252 (2012), no. 2, 1813-1834. https://doi.org/10.1016/j.jde.2011.08.035
  10. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  11. G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $R^3$, J. Differential Equations 257 (2014), no. 2, 566-600. https://doi.org/10.1016/j.jde.2014.04.011
  12. Y. Li, F. Li, and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations 253 (2012), no. 7, 2285-2294. https://doi.org/10.1016/j.jde.2012.05.017
  13. J. L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978, pp. 284-346. Invent. Math. 108 (1992), 247-262.
  14. W. Liu and X. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39 (2012), no. 1-2, 473-487. https://doi.org/10.1007/s12190-012-0536-1
  15. Z. Liu, S. Guo, and Z. Zhang, Existence and multiplicity of solutions for a class of sublinear Schrodinger-Maxwell equations, Taiwanese J. Math. 17 (2013), no. 3, 857- 872. https://doi.org/10.11650/tjm.17.2013.2202
  16. A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), no. 3, 1275-1287. https://doi.org/10.1016/j.na.2008.02.011
  17. J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer, Berlin, 1989.
  18. K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1, 246-255. https://doi.org/10.1016/j.jde.2005.03.006
  19. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986.
  20. A. Salvatore, Homoclinic orbits for a special class of nonautonomous Hamiltonian systems, in: Proceedings of the Second World Congress of Nonlinear Analysis, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 4849-4857. https://doi.org/10.1016/S0362-546X(97)00142-9
  21. J. Su and L. Zhao, An elliptic resonance problem with multiple solutions, J. Math. Anal. Appl. 319 (2006), no. 2, 604-616. https://doi.org/10.1016/j.jmaa.2005.10.059
  22. J. Sun and T. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations 256 (2014), no. 4, 1771-1792. https://doi.org/10.1016/j.jde.2013.12.006
  23. X. Wu, Existence of nontrivial solutions and high energy solutions for Schrodinger- Kirchhoff-type equations in R N, Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 1278-1287. https://doi.org/10.1016/j.nonrwa.2010.09.023
  24. X. Wu, High energy solutions of systems of Kirchhoff-type equations in R N, J. Math. Phys. 53 (2012), no. 6, 1-18.
  25. J. Zhang and S. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal. 60 (2005), no. 2, 221-230. https://doi.org/10.1016/S0362-546X(04)00313-X

Cited by

  1. Multiple Solutions for the Asymptotically Linear Kirchhoff Type Equations onRN vol.2016, 2016, https://doi.org/10.1155/2016/9503073