Acknowledgement
Supported by : Pusan National University
References
-
A. Badawi, On semicommutative
$\pi$ -regular rings, Comm. Algebra 22 (1994), no. 1, 151-157. https://doi.org/10.1080/00927879408824837 - J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- M. Henriksen, On a class of regular rings that are elementary divisor ring, Arch. Math. 24 (1973), 133-141. https://doi.org/10.1007/BF01228189
-
C. Huh, N. K. Kim, and Y. Lee, Examples of strongly
$\pi$ -regular rings, J. Pure Appl. Algebra 189 (2004), no. 1-3, 195-210. https://doi.org/10.1016/j.jpaa.2003.10.032 - C. Huh, Y. Lee, and A. Somktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
- N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352-355.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987.
- W. K. Nicholson, I- rings, Trans. Amer. Math. Soc. 207 (1975), 361-373.
- G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9