• Title/Summary/Keyword: Kinetic Constant

Search Result 596, Processing Time 0.028 seconds

Model for Estimating CO2 Concentration in Package Headspace of Microbiologically Perishable Food

  • Lee, Dong-Sun;Kim, Hwan-Ki;An, Duck-Soon;Yam, Kit L.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.364-369
    • /
    • 2011
  • Levels of carbon dioxide gas, a metabolite of microbial growth, have been reported to parallel the onset of microbial spoilage and may be used as a convenient index for a packaged food's shelf life. This study aimed to establish a kinetic model of $CO_2$ production from perishable food for the potential use for shelf life control in the food supply chain. Aerobic bacterial count and package $CO_2$ concentration were measured during the storage of seasoned pork meat at four temperatures (0, 5, 10 and $15^{\circ}C$), and their interrelationship was investigated to establish a mathematical model. The microbial growth at constant temperature was described by using model of Baranyi and Roberts. $CO_2$ production from the stored food could be explained by taking care of its yield and maintenance factors linked to the microbial growth. By establishing the temperature dependence of the microbial growth and $CO_2$ yield factor, $CO_2$ partial pressure or concentration in package headspace could be estimated to a limited extent, which is helpful for controlling the shelf life under constant and dynamic temperature conditions. Application and efficacy of the model needs to be improved with further refinement in the model.

Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene Meldrum's Acids in Acetonitrile

  • Oh, Hyuck-Keun;Kim, Tae-Soo;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.193-196
    • /
    • 2003
  • Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)$ to benzylidene Meldrum's acids (BMA; $YC_6H_4CH=C(COO)_2C(CH_3)_2$) have been investigated in acetonitrile at 20.0 ℃. The rates of addition are greatly enhanced due to the abnormally high acidity of Meldrum's acid. The magnitudes of the Hammett $({\rho}_X\;and\;{\rho}_Y)$ and Bronsted $({\rho}_X$)$ coefficients are rather small suggesting an early transition state. The sign and magnitude of the cross-interaction constant, ${\rho}_{XY}$ (= -0.33), and kinetic isotope effects $(k_H/k_D\;{\stackrel}{~}{=}\;1.5-1.7)$ involving deuterated benzylamine nucleophilies $(XC_6H_4CH_2ND_2)$ are indicative of hydrogen-bonded cyclic transition state. The activation parameters, ${\Delta}H^{\neq}\;{\stackrel}{~}{=}\;4\;kcal\;mol^{-1}\;and\;{\Delta}S^{\neq}\;{\stackrel}{~}{=}\;-37\;e.u.$, are also in line with the proposed mechanism.

Biosorption of Lead $(Pb^{2+})$ from Aqueous Solution by Rhodotorula aurantiaca

  • Cho, Dae-Haeng;Yoo, Man-Hyong;Kim, Eui-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.250-255
    • /
    • 2004
  • The aim of this work was to investigate the adsorption isotherm and kinetic model for the biosorption of lead $(Pb^{2+})$ by Rhodotorula aurantiaca and to examine the environmental factors for this metal removal. Within five minutes of contact, $Pb^{2+}$ sorption reached nearly 86% of the total $Pb^{2+}$ sorption. The optimum initial pH value for removal of $Pb^{2+}$ was 5.0. The percentage sorption increased steeply with the biomass concentration up to 2 g/l and thereafter remained more or less constant. The Langmuir sorption model provided a good fit throughout the concentration range. The conformity of these data to the Langmuir model indicated that biosorption of $Pb^{2+}$ by R. aurantiaca could be characterized as a monolayer, single-site type phenomenon with no interaction between ions adsorbed in neighboring sites. The maximum $Pb^{2+}$ sorption capacity $(q_{max})$ and Langmuir constant (b) were 46.08 mg/g of biomass and 0.04 l/mg, respectively. The pseudo second-order equation was well fitted to the experimental data. The correlation coefficients for the linear plots of t/q against t for the second-order equation were 0.999 for all the initial concentrations of biosorbent for contact times of 180 min. The theoretical $q_{eq}$ value was very close to the experimental $q_{eq}$ value.

Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber (부타디엔 고무로 결합된 탄소반죽 바이오센서를 이용한 과산화수소의 전기화학적 정량)

  • Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.505-510
    • /
    • 2010
  • When polybutadiene dissolved in toluene was a binder of carbon powder, the volatility of solvent just after electrode fabrication assured the mechanical solidity of the carbon paste electrode. This characteristic met the qualifications for practical use of carbon paste electrodes. A new enzyme electrode bound with butadiene rubber was constructed. In order to confirm whether it shows quantitative electrochemical behaviors or not, its electrochemical kinetic parameters, e.g. the symmetry factor, the exchange current density, the capacitance of double layer, the time constant, the maximum current, the Michaelis constant and other factors were investigated. These experimental facts showed that butadiene rubber is a recommendable binder for practical use of a carbon paste electrode.

Electrochemical Properties of Polypyrrole-Glucose Oxidase Enzyme Electrode with Different Dopants (Polypyrrole-Glucose Oxidase 효소전극의 배위자 크기에 따른 전기화학적 특성)

  • 김현철;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2002
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte, KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior, was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the oxidation potential of the PPy was about -02 V vs Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. The falloff of the oxidation potential gave a sign of an improvement in the electron hopoing mechanism on the backbone. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS improved in mass transport or diffusion. That was because the PPy doped with p-TS was more porous than PPy with KCl. We attained an effect of good kinetic parameters, in the case of PP-GOx enzyme electrodes doped with p-TS, which were determined by 58 mmol dm$\^$-3/ for apparent Michaelis constant and by 581 ㎂ for maximum current respectively.

Optimization Studies on Water Treatment Process of Seawater Recirculation Fish Culture Systems 1. Ammonia Removal Kinetics in Seawater Using Rotating Biological Contactor Process (순환여과식 해산 어류 양식장의 수처리 공정 최적화 연구 1. 회전원판법에 의한 해수 중의 암모니아 제거 동력학)

  • CHO Young-Gae;LEE Jae-Kwan;LEE Heon-Mo;YANG Byung-Soo
    • Journal of Aquaculture
    • /
    • v.6 no.4
    • /
    • pp.311-321
    • /
    • 1993
  • Ammonia accumulation is regarded as the limiting factor of the first priority in water qualities of aquatic culture systems. Nitrification efficiency and characteristics in seawater were evaluated using Rotating Biological Contactor (RBC) process as a part of the recycling water treatment facilities for marine fish culture system. Ammonia removal efficiency regarded 99.7 to $83.7\%$ at the ammonia surface loading rates of 48 to $393 mg/m^2$ -day. RBC process was able to withstand to the fluctuation of influent ammonia concentrations and loading and produced the stable effluent. The mathematical model on the fixed-film biological reactor developed by Kornegay seemed to be suitable to RBC process kinetic evaluation for the recycling water treatment of the marine fish culture system. Area capacity constant (P) and half-velocity constant (Ks) in the model were 0.188g/m^2$-day and 1.25mg/l, respectively.

  • PDF

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.

In-situ Calibration of the Hydroperoxyl Radical Using an Immobilized TiO2 Photocatalyst in the Atmosphere

  • Kwon, Bum-Gun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.785-789
    • /
    • 2008
  • The present study is the first report of utilizing $TiO_2$ photocatalyst to analytically calibrate the hydroperoxyl radical ($HO_2\;^{\cdot}$). An in-situ calibration method of $HO_2\;^{\cdot}$ is proposed for air monitoring by using an 2-methyl-6-(pmethoxyphenyl)- 3,7-dihydroimidazo-[1,2-a]pyrazin-3-one (MCLA)-chemiluminescence (CL) technique. In this method, $HO_2\;^{\cdot}$($pK_a$ = 4.80) is produced by the ultraviolet (UV) photolysis of immobilized $TiO_2$ using a constant flow rate of air equilibrated water, in which $HO_2\;^{\cdot}$ is controlled by using various lengths of knotted tubing reactor (KTR). The principle of the proposed calibration is based on the experimentally determined halflife ($t_{1/2}$) of $HO_2\;^{\cdot}$ and its empirically observed pH-dependent rate constant, $k_{obs}$, at a given pH. The concentration of $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$− is increased as pH increases. This pH dependence is due to the different disproportionative reactivities between $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$− and $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$−. Experimental results indicate the practical feasibility of the approach, producing very promising method.

Inhibition of Diacylglycerol Acyltransferase by Phenylpyropenes Produced by Penicillium griseofulvum F1959

  • Lee, Seung-Woong;Rho, Mun-Chual;Choi, Jung-Ho;Kim, Koan-Hoi;Choi, Yong-Seok;Lee, Hyun-Sun;Kim, Young-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1785-1788
    • /
    • 2008
  • Phenylpyropenes A, B, and C, isolated from Penicillium griseofulvum F1959, inhibited DGAT in rat liver microsomes with $IC_{50}$ values of $78.7{\pm}1.6$, $21.7{\pm}0.2$, and $11.04{\pm}0.2{\mu}M$, respectively. In addition, a kinetic analysis using a Lineweaver-Burk plot revealed that phenylpyropene C was a noncompetitive inhibitor of DGAT. The apparent Michaelis constant ($K_m$) value and inhibition constant ($K_i$) value were calculated to be $8{\mu}M$ and $10.48{\mu}M$, respectively. Moreover, phenylpyropene C inhibited triglyceride formation in HepG2 cells.

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.