DOI QR코드

DOI QR Code

In-situ Calibration of the Hydroperoxyl Radical Using an Immobilized TiO2 Photocatalyst in the Atmosphere

  • Kwon, Bum-Gun (Environmental & Whole Information System (E&WIS))
  • Published : 2008.04.20

Abstract

The present study is the first report of utilizing $TiO_2$ photocatalyst to analytically calibrate the hydroperoxyl radical ($HO_2\;^{\cdot}$). An in-situ calibration method of $HO_2\;^{\cdot}$ is proposed for air monitoring by using an 2-methyl-6-(pmethoxyphenyl)- 3,7-dihydroimidazo-[1,2-a]pyrazin-3-one (MCLA)-chemiluminescence (CL) technique. In this method, $HO_2\;^{\cdot}$($pK_a$ = 4.80) is produced by the ultraviolet (UV) photolysis of immobilized $TiO_2$ using a constant flow rate of air equilibrated water, in which $HO_2\;^{\cdot}$ is controlled by using various lengths of knotted tubing reactor (KTR). The principle of the proposed calibration is based on the experimentally determined halflife ($t_{1/2}$) of $HO_2\;^{\cdot}$ and its empirically observed pH-dependent rate constant, $k_{obs}$, at a given pH. The concentration of $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$− is increased as pH increases. This pH dependence is due to the different disproportionative reactivities between $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$− and $HO_2\;^{\cdot}$/$O_2\;^{\cdot}$−. Experimental results indicate the practical feasibility of the approach, producing very promising method.

Keywords

References

  1. Cantrell, C. A.; Stedman, D. H. Geophys. Res. Lett. 1982, 9, 846-849 https://doi.org/10.1029/GL009i008p00846
  2. Hastie, D. R.; Weissenmayer, M.; Burrows, J. P.; Harris, G. W. Anal. Chem. 1991, 63, 2048-2057 https://doi.org/10.1021/ac00018a029
  3. Lightfoot, R. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmospheric Environment. 1992, 26A, 1805-1961
  4. Faust, B. C.; Allen, J. M. J. Geophys. Res. 1992, 97, 12913-12926 https://doi.org/10.1029/92JD00843
  5. Stevens, P. S.; Mather, J. H.; Brune, W. H. J. Geophys. Res. 1994, 99, 3543-3557 https://doi.org/10.1029/93JD03342
  6. Hu, J.; Stedman, D. H. Environ. Sci. Technol. 1995, 29, 1655-1659 https://doi.org/10.1021/es00006a032
  7. Cantrell, C. A.; Shetter, R. E.; Calvert, J. G. Anal. Chem. 1996, 68, 4194-4199 https://doi.org/10.1021/ac960639e
  8. Kirchner, F.; Stockwell, W. R. J. Geophys. Res. 1996, 101, 21007-21022 https://doi.org/10.1029/96JD01519
  9. Sillman, S.; He, D.; Pippin, M. R.; Daum, P. H.; Imre, D. G.; Kleinman, L. I.; Lee, J. H.; Weinstein-Lloyd, J. J. Geophys. Res. 1998, 103, 22629-22644 https://doi.org/10.1029/98JD00349
  10. Zheng, J.; Springston, S. R.; Weinstein-Lloyd, J. Anal. Chem. 2003, 75, 4696-4700 https://doi.org/10.1021/ac034429v
  11. Heard, D. E.; Pilling, M. J. Chem. Rev. 2003, 103, 5163-5198 https://doi.org/10.1021/cr020522s
  12. Hard, T. M.; O'Brien, R. J.; Chan, C. Y.; Mehrabzadeh, A. A. Environ. Sci. Technol. 1984, 18, 768-777 https://doi.org/10.1021/es00128a009
  13. National Aeronautics and Space Administration (NASA). Assessment of techniques for measuring tropospheric $H_xO_y$. (Conference Publication 2332); Hoell, J. M., Ed.; Proceeding of a workshop held in Palo Alto; California August 16-20; 1984
  14. Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14
  15. Kwon, B. G.; Lee, J. H. Anal. Chem. 2004, 76, 6359-6364 https://doi.org/10.1021/ac0493828
  16. Zhu, Y.; Zhang, L.; Gao, C.; Cao, L. J. Mater. Sci. 2000, 35, 4049-4054 https://doi.org/10.1023/A:1004882120249
  17. Courbon, H.; Formenti, M.; Pichat, P. J. Phys. Chem. 1977, 81, 550-554 https://doi.org/10.1021/j100521a012
  18. Howe, R. F.; Grätzel, M. J. Phys. Chem. 1987, 91, 3906-3909 https://doi.org/10.1021/j100298a035
  19. Gerisher, H.; Heller, A. J. Phys. Chem. 1991, 95, 5261-5267 https://doi.org/10.1021/j100166a063
  20. Wang, C.-M.; Heller, A.; Gerischer, H. J. Am. Chem. Soc. 1992, 114, 5230-5234 https://doi.org/10.1021/ja00039a039
  21. Upadhya, S.; Ollis, D. F. J. Phys. Chem. B 1997, 101, 2625-2631 https://doi.org/10.1021/jp962649p
  22. Mills, A.; Hunte, S. L. Journal of Photochemistry and Photobiology A: Chemistry. 1997, 108, 1-35 https://doi.org/10.1016/S1010-6030(97)00118-4
  23. Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr. Chem. Rev. 1995, 95, 735-758 https://doi.org/10.1021/cr00035a013
  24. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96 https://doi.org/10.1021/cr00033a004
  25. Nosaka, Y.; Yamashita, Y.; Fukuyama, H. J. Phys. Chem. B 1997, 101, 5822-5827 https://doi.org/10.1021/jp970400h
  26. Hirakawa, T.; Kominami, H.; Ohtani, B.; Nosaka, Y. J. Phys. Chem. B 2001, 105, 6993-6999 https://doi.org/10.1021/jp0112929
  27. Hirakawa, T.; Nosaka, Y. Langmuir 2002, 18, 3247-3254 https://doi.org/10.1021/la015685a
  28. Nakano, M.; Sugioka, K.; Ushijima, Y.; Goto, T. Anal. Biochem. 1986, 159, 363-369 https://doi.org/10.1016/0003-2697(86)90354-4
  29. Shimomura, O.; Wu, C.; Murai, A.; Nakamura, H. Anal. Biochem. 1998, 258, 230-235 https://doi.org/10.1006/abio.1998.2607
  30. Teranishi, K.; Shimomura, O. Anal. Biochem. 1997, 249, 37-43 https://doi.org/10.1006/abio.1997.2150

Cited by

  1. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films vol.21, pp.19, 2014, https://doi.org/10.1007/s11356-014-2568-6
  2. Laser Spectroscopy for Atmospheric and Environmental Sensing vol.9, pp.12, 2009, https://doi.org/10.3390/s91210447
  3. Experimental Evidence of the Mobility of Hydroperoxyl/Superoxide Anion Radicals from the Illuminated TiO2 Interface into the Aqueous Phase vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.667