DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene Meldrum's Acids in Acetonitrile

  • Published : 2003.02.20

Abstract

Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)$ to benzylidene Meldrum's acids (BMA; $YC_6H_4CH=C(COO)_2C(CH_3)_2$) have been investigated in acetonitrile at 20.0 ℃. The rates of addition are greatly enhanced due to the abnormally high acidity of Meldrum's acid. The magnitudes of the Hammett $({\rho}_X\;and\;{\rho}_Y)$ and Bronsted $({\rho}_X$)$ coefficients are rather small suggesting an early transition state. The sign and magnitude of the cross-interaction constant, ${\rho}_{XY}$ (= -0.33), and kinetic isotope effects $(k_H/k_D\;{\stackrel}{~}{=}\;1.5-1.7)$ involving deuterated benzylamine nucleophilies $(XC_6H_4CH_2ND_2)$ are indicative of hydrogen-bonded cyclic transition state. The activation parameters, ${\Delta}H^{\neq}\;{\stackrel}{~}{=}\;4\;kcal\;mol^{-1}\;and\;{\Delta}S^{\neq}\;{\stackrel}{~}{=}\;-37\;e.u.$, are also in line with the proposed mechanism.

Keywords

References

  1. Patai, S.; Rappoport, Z. In The Chemistry of Alkenes; Patai, S., Ed.; Interscience: New York, 1964; p 469.
  2. Bernasconi, C. F. Tetrahedron 1989, 45, 4017. https://doi.org/10.1016/S0040-4020(01)81304-1
  3. Rappoport, Z.; Ladkani, D. Chem. Scr. 1974, 5, 124.
  4. Rappoport, Z. Adv. Phys. Org. Chem. 1969, 7, 1. https://doi.org/10.1016/S0065-3160(08)60263-4
  5. Modena, G. Acc. Chem. Res. 1971, 4, 73. https://doi.org/10.1021/ar50038a005
  6. Miller, S. I. Tetrahedron 1977, 33, 1211. https://doi.org/10.1016/0040-4020(77)80417-1
  7. Rappoport, Z. Acc. Chem. Res. 1981, 14, 7. https://doi.org/10.1021/ar00061a002
  8. Rappoport, Z. Acc. Chem. Res. 1992, 25, 474. https://doi.org/10.1021/ar00022a007
  9. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301. https://doi.org/10.1021/ar00140a006
  10. Schreiber, B.; Martinek, H.; Wolscham, P.; Schuster, P. J. Am. Chem. Soc. 1979, 101, 4708. https://doi.org/10.1021/ja00510a046
  11. Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 101.
  12. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188. https://doi.org/10.1021/jo991823d
  13. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391. https://doi.org/10.1021/jo000512w
  14. Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2002, 282.
  15. Arnett, E. M.; Harrelson, J. A. Jr. J. Am. Chem. Soc. 1987, 109, 809. https://doi.org/10.1021/ja00237a028
  16. Wang, X.; Houk, K. N. J. Am. Chem. Soc. 1988, 110, 1870. https://doi.org/10.1021/ja00214a032
  17. Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1988, 110, 1872. https://doi.org/10.1021/ja00214a033
  18. Bernasconi, C. F.; Fornarini, S. J. Am. Chem. Soc. 1980, 102, 5329. https://doi.org/10.1021/ja00536a035
  19. Bernasconi, C. F.; Leonarduzzi, G. D. J. Am. Chem. Soc. 1982, 104, 5133. https://doi.org/10.1021/ja00383a024
  20. Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108, 5251. https://doi.org/10.1021/ja00277a032
  21. Bernasconi, C. F.; Panda, N. J. Org. Chem. 1987, 52, 3042. https://doi.org/10.1021/jo00390a016
  22. Bernasconi, C. F.; Ketner, R. J. J. Org. Chem. 1998, 63, 6266. https://doi.org/10.1021/jo980574a
  23. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  24. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  25. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  26. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  27. Blackwell, L. F.; Fischer, A.; Miller, I. J.; Topsom, R. D.; Vaughan, J. J. Chem. Soc. 1964, 3588. https://doi.org/10.1039/jr9640003588
  28. Oh, H. K.; Lee, J. Y.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 1198.
  29. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molcular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  30. Foresman, J. B.; Frisch, AE, Exploring Chemistry with Electronic Structure Methods, 2nd Ed.; Gaussian Inc.: Pittsburgh, 1996; Part 2.
  31. Page, M.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, 1997; p 259.
  32. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597. https://doi.org/10.1021/ja00336a047
  33. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591. https://doi.org/10.1021/ja00336a046
  34. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem. 1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  35. Castro, E. A.; Munoz, P.; Santos, J. G. J. Org. Chem. 1999, 64, 8298. https://doi.org/10.1021/jo991036g
  36. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  37. Wiberg, K. B. Physical Organic Chemistry; Wiley: New York, 1964; p 378.
  38. Schuster, P.; Polansky, O. E.; Wessely, F. Monatsh. Chem. 1963, 95, 53. https://doi.org/10.1007/BF00909251

Cited by

  1. Kinetics and mechanism of benzylamine additions to ethyl α-acetyl-β-phenylacrylates in acetonitrile vol.2, pp.8, 2004, https://doi.org/10.1039/B401239A
  2. Organocatalyzed Multicomponent Synthesis of Isoxazolidin-5-ones vol.17, pp.21, 2015, https://doi.org/10.1021/acs.orglett.5b02755
  3. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  4. Meldrum's Acid: A Useful Platform in Asymmetric Organocatalysis vol.8, pp.11, 2016, https://doi.org/10.1002/cctc.201600247
  5. Determination of the Electrophilicity Parameters of Diethyl Benzylidenemalonates in Dimethyl Sulfoxide: Reference Electrophiles for Characterizing Strong Nucleophiles vol.14, pp.31, 2008, https://doi.org/10.1002/chem.200801277
  6. Nucleophilic Reactivities of Primary and Secondary Amines in Acetonitrile vol.2009, pp.36, 2009, https://doi.org/10.1002/ejoc.200900925
  7. Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile vol.26, pp.6, 2003, https://doi.org/10.5012/bkcs.2005.26.6.935
  8. Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene-3,5-heptadione in Acetonitrile vol.70, pp.8, 2003, https://doi.org/10.1021/jo047832q
  9. Kinetic and Mechanism of the Addition of Benzylamines to α-Phenyl-β-thiophenylacrylonitriles in Acetonitrile vol.27, pp.5, 2003, https://doi.org/10.5012/bkcs.2006.27.5.733
  10. Kinetics and Mechanism of the Addition of Anilines to β-Nitrostilbenes in Acetonitrile vol.28, pp.10, 2003, https://doi.org/10.5012/bkcs.2007.28.10.1670
  11. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  12. A Mechanistic Study on the Nucleophilic Addition Reactions of Benzylamines to the Activated Olefins vol.29, pp.6, 2003, https://doi.org/10.5012/bkcs.2008.29.6.1195
  13. Kinetics and Mechanism of Addition of Benzylamines to Methyl α-Cyanocinnamates in Acetonitrile vol.30, pp.8, 2003, https://doi.org/10.5012/bkcs.2009.30.8.1887