• 제목/요약/키워드: Kinematic displacement theory

검색결과 47건 처리시간 0.025초

Nonlinear static analysis of laminated composite beams under hygro-thermal effect

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.433-441
    • /
    • 2019
  • In this paper, geometrically nonlinear static analysis of laminated composite beams is investigated under hygrothermal effect. In the solution of problem, the finite element method is used within the first shear beam theory. Total Lagrangian approach is used nonlinear kinematic model. The geometrically nonlinear formulations are developed for the laminated beams with hygro-thermal effects. In the nonlinear solution of the problem, the Newton-Raphson method is used with incremental displacement. In order to verify of obtained formulations, a comparison study is performed. The effects of the fiber orientation angles, the stacking sequence of laminates, temperature rising and moisture changes on the nonlinear static displacements and configurations of the composite laminated beam are investigated in the numerical results.

Influence of clamped-clamped boundary conditions on the mechanical stress, strain and deformation analyses of cylindrical sport equipment

  • Yuhao Yang;Mohammad Arefi
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.465-473
    • /
    • 2023
  • The higher order shear deformable model and an exact analytical method is used for analytical bending analysis of a cylindrical shell subjected to mechanical loads, in this work. The shell is modelled using sinusoidal bivariate shear strain theory, and the static governing equations are derived using changes in virtual work. The eigenvalue-eigenvector method is used to exactly solve the governing equations for a constrained cylindrical shell The proposed kinematic relation decomposes the radial displacement into bending, shearing and stretching functions. The main advantage of the method presented in this work is the study of the effect of clamping constraints on the local stresses at the ends. Stress, strain, and deformation analysis of shells through thickness and length.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

체형에 따른 골프 스윙 동작 비교 (A Comparison of the Difference in the Golf Swing Motion According to Somatotypes)

  • 정남주;윤희중;백영수
    • 한국운동역학회지
    • /
    • 제12권2호
    • /
    • pp.33-49
    • /
    • 2002
  • 본 연구는 골프스윙 시 체형별로 나타나는 운동학적 요인을 분석하여 비교함으로써 체형별 골프지도를 위한 기초자료를 제공하는데 있다. 이를 위해 현재 남자 프로골프선수 9명을 대상으로 각자의 체중과 신장 그리고 상완둘레등을 고려하여 외배엽, 내배엽, 중배엽으로 체형을 나누었다. 각자의 골프스윙동작을 비디오 카메라로 촬영하여 스윙동작을 8개의 구간으로 나누어 분석하였으며 다음과 같이 결론에 도달하였다. 골프스윙 소요시간은 내배엽형이 가장 길었으며 다음으로 중배엽형, 마지막으로 외배엽형이 가장 짧은 스윙시간을 보이고 있었다. 좌우이동변위가 가장 크게 나타나는 체형은 중배엽형이었으며, 다음으로는 내배엽형, 그리고 외배엽형이 가장 작게 움직이는 것으로 나타났다. 내배엽형은 임팩트 시 상하변위가 상승쪽으로 향하고 있었으며 내배엽형과 중배엽형은 임팩트 시 거의 일정한 높이를 유지하여 안정감을 높이는 것으로 나타났다. 상체회전각도와 골반회전각도는 임팩트 시 외배엽형의 상체와 골반이 미리 돌아가는 형태를 취하고 있어 내배엽과 중배엽형에 비해 다소 다른 특징을 보이고 있었다. 이러한 스윙에 대한 체형별 운동학적 특징을 이론을 제시함에 있어 보다 근본적인 힘의 이동을 알아야 할 필요가 있다. 따라서, 차후 연구에서는 지면반력을 이용하여 압력중심점(COP)의 분석이 함께 이루어져야 할 것으로 판단된다.

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.

Post-buckling analysis of aorta artery under axial compression loads

  • Akbas, Seref Doguscan;Mercan, Kadir;Civalek, Omer
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.255-264
    • /
    • 2020
  • Buckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

카오스 이론을 적용한 보행분석 연구 (Application of the Chaos Theory to Gait Analysis)

  • 박기봉;고재훈;문병영;서정탁;손권
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.194-201
    • /
    • 2006
  • Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understand how variations in the gait pattern change over time. Eight healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Knee flexion-extension patterns were found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

시간최적제어를 이용한 지비크레인의 흔들림제어 (Anti-Sway Control of a Jib Crane Using Time Optimal Control)

  • 강민우;홍금식
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.87-94
    • /
    • 2005
  • This paper investigates the constant-level luffing and time optimal control of jib cranes. The constant-level luffing, which is the sustainment of the load at a constant height during luffing, is achieved by analyzing the kinematic relationship between the angular displacement of a boom and that of the main hoist motor of a jib crane. Under the assumption that the main body of the crane does not rotate, the equations of motion of the boom are derived using Newton's Second Law. The dynamic equations for the crane system are highly nonlinear; therefore, they are linearized under the small angular motion of the load to apply linear control theory. This paper investigates the time optimal control from the perspective of no-sway at a target point. A stepped velocity pattern is used to design the moving path of the jib crane. Simulation results demonstrate the effectiveness of the time optimal control, in terms of anti-sway motion of the load, while luffing the crane.

3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구 (An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin)

  • 정재상;이창훈
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.93-99
    • /
    • 2022
  • 본 연구에서는 바닥 조파장치가 설치된 3차원 조파수조에서 재현된 규칙파에 대한 해석해를 유도하였다. 바닥 조파장치로 삼각형 형상, 사각형 형상 및 두 형상이 복합된 형상이 적용되었다. 선형파 이론과 움직이는 바닥에 대한 경계조건, 동역학적 및 운동학적 자유수면 경계조건을 이용하여 조파수조 내의 3차원 속도포텐셜을 유도하였다. 그리고, 이로부터 각 방향 성분의 유속과 자유수면변위에 대한 해석해를 구하였다. 유도된 해석해는 바닥 조파장치가 설치된 조파수조에서 규칙파의 전파 특성에 대해 물리적으로 타당한 결과를 보였다. 바닥 조파장치가 snake 형태로 움직이는 경우의 비스듬히 전파하는 파랑의 조파에 대해서도 해석해를 유도하였으며, 해석 결과는 이론적으로 예측한 결과와 일치하였다.