References
- Akbas, S.D. (2017a), "Thermal effects on the vibration of functionally graded deep beams with porosity", J. Appl. Mech., 9(05), https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
- Akbas S.D. (2018a), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
- Akbas S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.
- Akbas S.D. (2018c), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
- Akbas S.D. (2018d), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567.
- Akbas, S.D. (2019a), "Hygrothermal Post-Buckling Analysis of Laminated Composite", J. Appl. Mech., 11(1). https://doi.org/10.1142/S1758825119500091.
- Akbas, S.D. (2019b), "Post-Buckling Analysis of a Fiber Reinforced Composite Beam with Crack", Eng. Fracture Mech., 212(1), 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
- Akbas, S.D. (2019c), "Nonlinear Behavior of Fiber Reinforced Cracked Composite Beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
- Akbas, S.D. (2019d), "Hygro-Thermal Nonlinear Analysis of a Functionally Graded Beam", J. Appl. Comput. Mech., 5(2), 477-485.
- Biswal, M., Sahu, S. K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445.
- Bouazza, M, Amara, K, Zidour,M, Tounsi ,A, Adda-Bedia, E.A., (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2): 35-43.
- Cardoso, JB., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin Wall. Struct., 47(11), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002.
- Ebrahimi, F. and Hosseini, S.H.S. (2018), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Struct. Eng. Mech., 65(6), 645-656. https://doi.org/10.1140/epjp/i2017-11400-6.
- Farokhi, H., Ghayesh, M. H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007.
- Gayen, D. and Roy, T. (2013) "Hygro-thermal effects on stress analysis of tapered laminated composite beam", J. Compos. Mater., 3(3), 46-55. https://doi.org/10.5923/j.cmaterials.20130303.02.
- Ghayesh, M. H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Comput., 217(2), 545-556. https://doi.org/10.1016/j.amc.2010.05.088.
- Ghayesh, M. H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001.
- Ghayesh, M. H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Modell., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
- Gholami, R., Ansari, R. and Gholami, Y. (2017), "Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams", Compos. Struct., 174, 45-58. https://doi.org/10.1016/j.compstruct.2017.04.042.
- Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029.
- Kazemirad, S., Ghayesh, M. H. and Amabili, M. (2013), "Thermo-mechanical nonlinear dynamics of a buckled axially moving beam", Arch. Appl. Mech., 83(1), 25-42. https://doi.org/10.1007/s00419-012-0630-8.
- Li, Z.M. and Qiao, P. (2015), "Thermal postbuckling analysis of anisotropic laminated beams with different boundary conditions resting on two-parameter elastic foundations", Europe. J. Mech. A Solid, 54, 30-43. https://doi.org/10.1016/j.euromechsol.2015.06.001.
- Pipes, R.B., Vinson, J.R. and Chou, T.W. (1976), "On the hygrothermal response of laminated composite systems," J. Compos. Mater., 10(2), 129-148. https://doi.org/10.1177/002199837601000203.
- Sahu, S.K., Rath, M.K. and Sahoo, R. (2012), "Parametric instability of laminated composite doubly curved shell panels subjected to hygrothermal environment", Adv. Mater. Res., 383, 3212-3216. https://doi.org/10.4028/www.scientific.net/AMR.383-390.3212.
- Vinson, J.R. and Sierakowski, R.L. (2002), The Behavior of Structures Composed of Composite Materials, Springer, Germany.
- Wang, H., Chen, C.S. and Fung, C.P. (2015), "Hygrothermal effects on the vibration and stability of an initially stressed laminated plate", Struct. Eng. Mech., 56(6), 1041-1061. https://doi.org/10.12989/sem.2015.56.6.1041.
- Zenkour, A.M., Mashat, D.S. and Alghanmi, R.A. (2014), "Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory", J. Mech. Mater. Des., 10(2), 213-226. https://doi.org/10.1007/s10999-014-9242-5.
- Zhan, Q.W., Fan, X.L. and Sun, Q. (2011), "Effects of hygrothermal environment on static properties of laminated composites with a circular open hole", J. Solid Rocket Technol., 34(6), 764-767. https://doi.org/10.3969/j.issn.1006-2793.2011.06.019
Cited by
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.263
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.149
- Convergency and Stability of Explicit and Implicit Schemes in the Simulation of the Heat Equation vol.11, pp.10, 2021, https://doi.org/10.3390/app11104468