DOI QR코드

DOI QR Code

Application of the Chaos Theory to Gait Analysis

카오스 이론을 적용한 보행분석 연구

  • 박기봉 (부산대학교 기계설계공학과) ;
  • 고재훈 (부산대학교 기계설계공학과) ;
  • 문병영 (부산대학교 동남권부품소재 산학협력혁신사업단) ;
  • 서정탁 (부산대학교 의과대학 정형외과) ;
  • 손권 (부산대학교 기계공학부)
  • Published : 2006.02.01

Abstract

Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understand how variations in the gait pattern change over time. Eight healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Knee flexion-extension patterns were found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Keywords

References

  1. Moon, B. Y., Son, K., Park, J. H. and Suh, J. T., 2003, 'A Method to Describe and Analyze Human Knee Joint Motion,' J. of KSPE, Vol. 20, No. 10, pp. 233-239
  2. Park, K. B., Kim, K. B., Son, K., Suh, J. T. and Moon, B. Y., 2004, 'Construction and Measurement of Three-Dimensional Knee Joint Model of Koreans,' Trans. of KSME (A), Vol. 28, No. 11, pp. 1664-1671 https://doi.org/10.3795/KSME-A.2004.28.11.1664
  3. Chung, C. Y., Lee, M. C., Moon, Y. W., Kim, T. G., Lim, S. T. and Seong, S. C., 1997, 'Gait Analysis after Total Knee Arthroplasty,' J. of Korean Orthop. Assoc, Vol. 32, No.5, pp. 1290-1301
  4. Perry. J., 1992, 'Gait Analysis : Normal and pathological function,' SLACK Inc, 15-21
  5. Sutherland, D. H., Olshen, R. A., Biden, E. N. and Wyatt, M. P., 1988, 'The Development of Mature Walking,' London, Mac Keith Press, pp. 20-35
  6. Craik, R. L. and Oatis, C. A., 1995, 'Gait Analysis Theory and Application,' Mosby-Year Book. Inc, pp. 12-38
  7. Hausdorff, J. M., Edelberg, H. K., Mitchell, S. L. and Goldberger, A. L., 1997, 'Increased Gait Unsteadiness in Community-Dwelling Elderly Fallers,' J. Arch. Phys. Med. Rehab., Vol. 78, No.3, pp. 278-283 https://doi.org/10.1016/S0003-9993(97)90034-4
  8. Stergiou, N., Moraiti, C., Giakas, G., Ristanis, S. and Georgoulis, A. D., 2004, 'The Effect of the Walking Speed on the Stability of the Anterior Cruciate Ligament Deficient Knee,' Clin. Biomech, Vol. 19, No.9, pp. 957-963 https://doi.org/10.1016/j.clinbiomech.2004.06.008
  9. Dingwell, J. B., Cusumano, J. P., Sremad, D. and Cavanagh, P. R., 2000, 'Slower Speeds in Patients with Diabetic Neuropathy Lead to Improved Local Dynamic Stability of Continuous Overground Walking,' J. of Biomech, Vol. 33, No. 10, pp. 1269-1277 https://doi.org/10.1016/S0021-9290(00)00092-0
  10. Dingwell, J. B. and Cusumano, J. P., 2000, 'Nonlinear Time Series Analysis of Normal and Pathological Human Walking,' Chaos, Vol. 10, No. 4, pp. 848-863 https://doi.org/10.1063/1.1324008
  11. Buzzi, U. H., Stergiou, N., Kurz, M. J., Hageman, P. A. and Heidel, J., 2004, 'Nonlinear Dynamics Indicates Aging Affects Variability during Gait,' Clin. Biomech, Vol. 18, No.5, pp. 435-443 https://doi.org/10.1016/S0268-0033(03)00029-9
  12. Reinschmidt, C., Bogert, A. J., Murphy, N., Lundberg, A. and Nigg, B. M., 1997, 'Tibiocalcaneal Motion during Running, Measured with External and Bone Markers,' Clin. Biomech, Vol. 12, No.1, pp. 8-16 https://doi.org/10.1016/S0268-0033(96)00046-0
  13. Rapp, P. E., 1994, 'A Guide to Dynamical Analysis,' Integr. Physiol. Behav. Sci, Vol. 29, No. 3, pp. 311-327 https://doi.org/10.1007/BF02691335
  14. Abraham, N. B., Albano, A. M., Das, B., Guzman, G. D. and YongR, S., 1986, 'Calculating the Dimension of Attractors from Small Data Sets,' Phys. Lett. A, Vol. 114, No.5, pp. 217-221 https://doi.org/10.1016/0375-9601(86)90210-0
  15. Baker, G. L. and Gollub, J. P., 1996, 'Chaotic Dynamics,' Cambridge University Press, New York, pp. 30-65
  16. Jeong, J., Gore, J. C. and Peterson, B. S., 2001, 'Mutual Information Analysis of the EEG in Patients with Alzheimer's Disease,' Clinical Neurophysiology, Vol. 114, No.5, pp. 827-835 https://doi.org/10.1016/S1388-2457(01)00513-2
  17. Rhodes, C. and Morari, M., 1997, 'The False Nearest Neighbors Algorithm: An Overview,' Computers & Chemical Engineering, Vol. 21, No. 1, pp. 1149-1154 https://doi.org/10.1016/S0098-1354(97)87657-0
  18. Moon, H. T., 2001, 'Chaos and Nonlinear Dynamics,' Seoul National Universirt Press, Seoul, pp.4-18
  19. Wolf, A., Swift, J. B., Swinney, H. L. and Vastano, J. A., 1985, 'Determining Lyapunov Exponents from a Time Series,' Physica D: Nonlinear Phenomena, Vol. 16, No.3, pp. 285-317 https://doi.org/10.1016/0167-2789(85)90011-9
  20. Lee, I. K., Kang, S. Y. and Ha, C. K., 2000, 'The Changes of EEG Nonlinear Parameter in Sleep and Wakefulness States,' J. of Korean - Neurological Association, Vol. 18, No. 1, pp. 50-53