• Title/Summary/Keyword: Kim functional equation

Search Result 216, Processing Time 0.028 seconds

STABILITY OF THE RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS IN m-VARIABLES

  • Lee, Young Whan;Kim, Gwang Hui
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.731-739
    • /
    • 2010
  • In this paper, we prove stability of the reciprocal difference functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)-r\(\sum_{i=1}^{m}x_i\)=\frac{(m-1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ and the reciprocal adjoint functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)+r\(\sum_{i=1}^{m}x_i\)=\frac{(m+1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ in m-variables. Stability of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables were proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar [13]. We extend their result to m-variables in similar types.

STABILITY OF THE G-FUNCTIONAL EQUATION

  • Kim, Gwang-Hui
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.837-844
    • /
    • 2002
  • In this paper, we obtain the Hyers-Ulam Stability for the difference equations of the form f(x + 1) = $\Gamma$(x)f(x), which is the reciprocal functional equation of the double gamma function.

ON THE STABILITY OF THE GENERALIZED G-TYPE FUNCTIONAL EQUATIONS

  • KIM, GWANG-HUI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.93-106
    • /
    • 2005
  • In this paper, we obtain the generalization of the Hyers-Ulam-Rassias stability in the sense of Gavruta and Ger of the generalized G-type functional equations of the form $f({{\varphi}(x)) = {\Gamma}(x)f(x)$. As a consequence in the cases ${\varphi}(x) := x+p:= x+1$, we obtain the stability theorem of G-functional equation : the reciprocal functional equation of the double gamma function.

ON STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Kim, Hark-Mann;Lee, Don O
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.73-84
    • /
    • 2003
  • In this paper, we investigate the new quadratic type functional equation f(2x + y) - f(x + 2y) = 3f(x) - 3f(y) and prove the stablility of this equation in the spirit of Hyers, Ulam, Rassias and G$\breve{a}$vruţa.

  • PDF

ON THE INITIAL VALUES OF SOLUTIONS OF A GENERAL FUNCTIONAL EQUATION

  • Chung, Jae-Young;Kim, Do-Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.387-396
    • /
    • 2011
  • We consider a general functional equation with time variable which arises when we investigate regularity problems of some general functional equations. As a result we prove the regularity of the initial values of the solutions. Also as an application we prove the regularity of solutions of some classical functional equations and their distributional versions.

Stability of a Generalized Quadratic Functional Equation (일반화된 2차 범함수방정식의 안정성)

  • Kim, Mi-Hye;Hwang, In-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.3
    • /
    • pp.103-109
    • /
    • 2003
  • Functional equations are useful in the expermental science because they play very important to formulate mathematical moods in general terms, through some not very restrictive equations, without postulating the forms of such functions. In this paper n solve one of a generalized quadratic functional equation (equation omitted) and prove the stability of this equation.

  • PDF

ON THE SUPERSTABILITY OF THE p-RADICAL SINE TYPE FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.387-398
    • /
    • 2021
  • In this paper, we will find solutions and investigate the superstability bounded by constant for the p-radical functional equations as follows: $f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=\;\{(i)\;f(x)f(y),\\(ii)\;g(x)f(y),\\(iii)\;f(x)g(y),\\(iv)\;g(x)g(y).$ with respect to the sine functional equation, where p is an odd positive integer and f is a complex valued function. Furthermore, the results are extended to Banach algebra.

THE STABILITY OF PEXIDERIZED COSINE FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.103-114
    • /
    • 2008
  • In this paper, we investigate the superstability problem for the pexiderized cosine functional equations f(x+y) +f(x−y) = 2g(x)h(y), f(x + y) + g(x − y) = 2f(x)g(y), f(x + y) + g(x − y) = 2g(x)f(y). Consequently, we have generalized the results of stability for the cosine($d^{\prime}Alembert$) and the Wilson functional equations by J. Baker, $P.\;G{\check{a}}vruta$, R. Badora and R. Ger, and G.H. Kim.

  • PDF

ON STABILITY OF THE EQUATION - g(x+p,y+q) = ${\varphi}(x,y)g(x,y)$

  • Shin, Dong-Soo;Kim, Gwang-Hui
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.1017-1027
    • /
    • 2000
  • On the positive real number, we obtain the Hyers-Ulam stability and a stability in the sense of R. Ger for the generalized beta function g(x+p,y+q) = ${\varphi}(x,y)g(x,y)$ in the following settings: $$\mid$g(x+p,y+q)-{\varphi}(x,y)g(x,y)$\mid${\leq}{\delta}$ and $$\mid$\frac{g(x+p,y+q)}{\varphi(x,y)g(x,y)}-1$\mid${\leq}{\psi}(x,y). As a consequence we obtain stability theorems for the gamma functional equation and the beta functional equation.