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Abstract. In this paper, we present the general solution of the functional equation

rf(
x+ y + z + w

s
) + rf(

x+ y − z − w

s
) + rf(

x− y + z − w

s
) + rf(

x− y − z + w

s
)

= tf(x) + tf(y) + tf(z) + tf(w)

and improve the Hyers–Ulam stability of the equation.

1. Introduction

In 1940, S.M. Ulam [12] gave a wide ranging talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomorphisms:
We are given a group G1 and a metric group G2 with metric φ( ·, ·). Given ε > 0,
does there exist a δ > 0 such that if f : G1 → G2 satisfies φ(f(x y), f(x) f(y)) < δ
for all x, y ∈ G1, then a homomorphism h : G1 → G2 exists with φ(f(x), h(x)) < ε
for all x ∈ G1?

Let X and Y be Banach spaces with norms ∥ · ∥ and ∥ · ∥, respectively. D.H.
Hyers [6] showed that if ε > 0 and f : X → Y such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ε

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

∥f(x)− T (x)∥ ≤ ε

for all x ∈ X.
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In 1950 T. Aoki [1] and in 1951 D.G. Bourgin [2] provided a generalized the
Hyers theorem for additive mapping and in 1978 Th.M. Rassias [10] generalized the
Hyers theorem for liner mapping by allowing the Cauchy difference to be unbounded.
Let f : X → Y be a mapping such that f(tx) is continuous in t ∈ R for each fixed
x ∈ X. Assume that there exist constants ε ≥ 0 and p ∈ [0, 1) such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ε(∥x∥p + ∥y∥p)

for all x, y ∈ X. Then Th.M. Rassias proved that there exists a unique R-linear
mapping T : X → Y such that

∥f(x)− T (x)∥ ≤ 2ε

2− 2p
∥x∥p

for all x ∈ X. And then, the result of Th.M. Rassias theorem has been generalized
by P. Gǎvruta [5] by allowing the Cauchy difference to be a generalized control
function.

A square norm on an inner product space satisfies the important parallelogram
equality

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.
The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

which may be originated from this parallelogram equality, is called a quadratic func-
tional equation. In particular, every solution of the quadratic functional equation is
said to be a quadratic function. A Hyers–Ulam stability problem for the quadratic
functional equation was proved by F. Skof [11] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. P.W. Cholewa [3] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an Abelian
group. In S. Czerwik [4] proved the Hyers–Ulam stability of the quadratic func-
tional equation. In the last decade, S. Lee and K. Jun [7] and S. Lee and C. Park [8]
have proved the Hyers–Ulam stability of quadratic type functional equation with
three variables.

Recently, C. Park [9] has investigated the Hyers–Ulam stability of the following
functional equation.

rf(
x+ y + z + w

s
) + rf(

x+ y − z − w

s
) + rf(

x− y + z − w

s
)

+rf(
x− y − z + w

s
) = tf(x) + tf(y) + tf(z) + tf(w)(1.1)

for all x, y, z, w ∈ X under the assumption of an even mapping f : X → Y with
f(0) = 0. Throughout this paper, we now assume that r, s, t are nonzero real num-
bers, and that X and Y are a normed linear space with norm ∥ · ∥ and a Banach
space with norm ∥ · ∥, respectively. In this paper, we establish the general solu-
tion of the functional equation (1.1) and then improve the Hyers–Ulam stability
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of the functional equation without the even condition and f(0) = 0 for a mapping
f : X → Y.

2. Stability of the Functional Equation in Four Variables

First of all, we solve the general solution of the equation (1.1).

Lemma 2.1. If a mapping f : X → Y satisfies the equation (1.1) for all x, y, z, w ∈
X, then f − f(0) is quadratic, and f(0) = 0 if r ̸= t.

Proof. First, we prove the case r ̸= t.
Letting x = y = z = w := 0 in (1.1), one has f(0) = 0. Putting y = z = w := 0

in (1.1), we have

4rf(
x

s
) = tf(x)(2.1)

for all x ∈ X. Using (2.1) and (1.1), we get

f(x+ y + z + w) + (x+ y − z − w) + f(x− y + z − w) + f(x− y − z + w)(2.2)

= 4f(x) + 4f(y) + 4f(z) + 4f(w)

for all x, y, z, w ∈ X. We note that f(y) = f(−y) by putting x = z = w := 0 in the
last equation. Putting z = w := 0 in (2.2), we deduce

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X. So f is quadratic.
Next, we prove the case r = t. In this case, we see the functional equation

f(
x+ y + z + w

s
) + f(

x+ y − z − w

s
) + f(

x− y + z − w

s
) + f(

x− y − z + w

s
)

= f(x) + f(y) + f(z) + f(w)

for all x, y, z, w ∈ X. Hence, putting f(x) − f(0) := Q(x), x ∈ X, one can easily
observe the relation

Q(
x+ y + z + w

s
) +Q(

x+ y − z − w

s
) +Q(

x− y + z − w

s
)

+Q(
x− y − z + w

s
) = Q(x) +Q(y) +Q(z) +Q(w), Q(0) = 0.(2.3)

Putting y = z = w := 0 in (2.3), we have 4Q(
x

s
) = Q(x), and so

Q(x+ y + z + w) +Q(x+ y − z − w) +Q(x− y + z − w)

+Q(x− y − z + w) = 4(Q(x) +Q(y) +Q(z) +Q(w))(2.4)
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for all x, y, z, w ∈ X. We observe that Q(y) = Q(−y) by setting x = z = w := 0 in
(2.4). Thus, by letting z = w := 0 in (2.4), one arrives at

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y)

for all x, y ∈ X. So Q is quadratic. 2

We now prove the Hyers–Ulam stability of the functional equation without the
even condition and f(0) = 0 for a mapping f : X → Y. Given a mapping f : X → Y ,
we set for notational convenience

Df(x, y, z, w)

= rf(
x+ y + z + w

s
) + rf(

x+ y − z − w

s
) + rf(

x− y + z − w

s
)

+rf(
x− y − z + w

s
)− [tf(x) + tf(y) + tf(z) + tf(w)]

for all x, y, z, w ∈ X.

Theorem 2.2. Let f : X → Y be a mapping for which there is a function φ :
X4 → [0,∞) such that

(2.5) Φ(x, y, z, w) :=
∞∑
j=0

1

4j
φ(2jx, 2jy, 2jz, 2jw) < ∞,

∥Df(x, y, z, w)∥ ≤ φ(x, y, z, w)(2.6)

for all x, y, z, w ∈ X. Then there exists a unique quadratic mapping Q : X → Y
such that

∥f(x) + 1

3
(1− 4r

t
)f(0)−Q(x)∥ ≤ 1

4|t|
[Φ(2x, 0, 0, 0) + 2Φ(x, x, 0, 0)](2.7)

for all x ∈ X, where 4|r − t|∥f(0)∥ ≤ φ(0, 0, 0, 0).

Proof. Putting y = z = w := 0 in (2.6), we get

∥4rf(x
s
)− tf(x)− 3tf(0)∥ ≤ φ(x, 0, 0, 0)

and then replacing x by 2x, we have

∥4rf(2x
s
)− tf(2x)− 3tf(0)∥ ≤ φ(2x, 0, 0, 0)(2.8)

for all x ∈ X. Putting y := x and z = w := 0 in (2.6), we have

∥2rf(2x
s
) + 2rf(0)− 2tf(x)− 2tf(0)∥ ≤ φ(x, x, 0, 0)(2.9)
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for all x ∈ X. By (2.8) and (2.9), we have

∥tf(2x)− 4tf(x) + (4r − t)f(0)∥ ≤ φ(2x, 0, 0, 0) + 2φ(x, x, 0, 0)

and so

∥f(2x)− 4f(x) +
(4r − t)

t
f(0)∥ ≤ 1

|t|
[φ(2x, 0, 0, 0) + 2φ(x, x, 0, 0)]

for all x ∈ X. Let F (x) = f(x)+
1

3
(1− 4r

t
)f(0), x ∈ X. Then we lead to the crucial

inequality due to the last functional inequality

∥F (2x)− 4F (x)∥ ≤ 1

|t|
[φ(2x, 0, 0, 0) + 2φ(x, x, 0, 0)],(2.10)

∥F (x)− F (2x)

4
∥ ≤ 1

4|t|
[φ(2x, 0, 0, 0) + 2φ(x, x, 0, 0)]

for all x ∈ X. Hence

∥F (2nx)

4n
− F (2n+1x)

4n+1
∥ =

1

4n
∥F (2nx)− F (2 · 2nx)

4
∥

≤ 1

4n+1|t|
[φ(2n+1x, 0, 0, 0) + 2φ(2nx, 2nx, 0, 0)](2.11)

for all x ∈ X and all nonnegative integers n. Thus, it follows from (2.11) that

(2.12)
∥∥∥F (2mx)

4m
− F (2nx)

4n

∥∥∥ ≤
n−1∑
k=m

1

4k+1|t|
[φ(2k+1x, 0, 0, 0) + 2φ(2kx, 2kx, 0, 0)]

for all x ∈ X and all nonnegative integers m and n with m < n. This shows that

the sequence {F (2nx)

4n
} is a Cauchy sequence for all x ∈ X by the convergence of

Φ. Since Y is complete, the sequence {F (2nx)

4n
} converges in Y for all x ∈ X. So

one can define a mapping Q : X → Y by

Q(x) = lim
n→∞

F (2nx)

4n
= lim

n→∞

f(2nx)

4n

for all x ∈ X. Obviously, Q(0) = 0. It follows from (2.6) and the definition of Q
that

∥DQ(x, y, z, w)∥ = lim
n→∞

1

4n
∥Df(2nx, 2ny, 2nz, 2nw)∥

≤ lim
n→∞

1

4n
φ(2nx, 2ny, 2nz, 2nw)
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for all x, y, z, w ∈ X. By Lemma 2.1, the mapping Q is quadratic. Putting m = 0
and letting n → ∞ in (2.12), we get the desired approximation (2.7).

Now, let Q
′
: X → Y be another quadratic mapping satisfying (2.7). Then we

have

∥ Q(x)−Q
′
(x) ∥ =

1

4n
∥Q(2nx)−Q

′
(2nx)∥

≤ 1

4n

(
∥Q(2nx)− f(2nx)− 1

3
(1− 4r

t
)f(0)∥

+∥f(2nx) + 1

3
(1− 4r

t
)f(0)−Q

′
(2nx)∥

)
≤ 2

4n+1|t|
[Φ(2n+1x, 0, 0, 0) + 2Φ(2nx, 2nx, 0, 0)],

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that Q(x) = Q
′
(x)

for all x ∈ X. This proves the uniqueness of Q. 2

Corollary 2.3. Let θ and p (0 < p < 2) be positive real numbers. Let f : X → Y
be a mapping such that

∥Df(x, y, z, w)∥ ≤ θ(∥x∥p + ∥y∥p + ∥z∥p + ∥w∥p)

for all x, y, z, w ∈ X. Then there exists a unique quadratic mapping Q : X → Y
such that

∥f(x) + 1

3
(1− 4r

t
)f(0)−Q(x)∥ ≤ θ

|t|
(
4 + 2p

4− 2p
)∥x∥p

for all x ∈ X.

Proof. Defining φ(x, y, z, w) := θ(∥x∥p+∥y∥p+∥z∥p+∥w∥p) and applying Theorem
2.2, we get the desired result. 2

Remark 2.4. Let f : X → Y be a mapping for which there is a function φ : X4 →
[0,∞) satisfying (2.5) and (2.6). Then by putting f̃(x) = f(x) − f(0), x ∈ X, we
have from the functional inequality (2.6)

∥Df̃(x, y, z, w)∥ ≤ φ(x, y, z, w) + 4|r − t|∥f(0)∥,

which yields

∥4rf̃(2x
s
)− tf̃(2x)∥ ≤ φ(2x, 0, 0, 0) + 4|r − t|∥f(0)∥,(2.13)

∥2rf̃(2x
s
)− 2tf̃(x)∥ ≤ φ(x, x, 0, 0) + 4|r − t|∥f(0)∥(2.14)

for all x ∈ X. By (2.13) and (2.14), one has

(2.15) ∥f̃(2x)− 4f̃(x)∥ ≤ 1

|t|
[φ(2x, 0, 0, 0) + 2φ(x, x, 0, 0) + 12|r − t|∥f(0)∥]
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for all x ∈ X. Thus, by applying the same argument as that of Theorem 2.2, one
can prove that there exists a unique quadratic mapping Q : X → Y such that

∥f(x)− f(0)−Q(x)∥ ≤ 1

4|t|
[Φ(2x, 0, 0, 0) + 2Φ(x, x, 0, 0)] +

4|r − t|∥f(0)∥
|t|

for all x ∈ X, where 4|r − t|∥f(0)∥ ≤ φ(0, 0, 0, 0).

Next, we consider another stability problem which is an alternative stability
result of Theorem 2.2.

Theorem 2.5. Let f : X → Y be a mapping for which there is a function φ :
X4 → [0,∞) such that

Ψ(x, y, z, w) :=

∞∑
j=0

4jφ(
x

2j
,
y

2j
,
z

2j
,
w

2j
) < ∞,(2.16)

∥Df(x, y, z, w)∥ ≤ φ(x, y, z, w)(2.17)

for all x, y, z, w ∈ X. Then there exists a unique quadratic mapping Q : X → Y
such that

∥f(x) + 1

3
(1− 4r

t
)f(0)−Q(x)∥ ≤ 1

|t|
[Ψ(x, 0, 0, 0) + 2Ψ(

x

2
,
x

2
, 0, 0)](2.18)

for all x ∈ X, where 4 | r − t | ∥f(0)∥ ≤ φ(0, 0, 0, 0).

Proof. First, we note that f(0) = 0 = φ(0, 0, 0, 0) by the convergence of Ψ(0, 0, 0, 0)

if r ̸= t. Replacing x by
x

2
in (2.10), we get

∥F (x)− 4F (
x

2
)∥ ≤ 1

|t|
[φ(x, 0, 0, 0) + 2φ(

x

2
,
x

2
, 0, 0)](2.19)

for all x ∈ X. Using (2.19), we have

∥4nF (
x

2n
)− 4n+1F (

x

2n+1
)∥ = 4n∥F (

x

2n
)− 4F (

x

2 · 2n
)∥(2.20)

≤ 4n

|t|

[
φ(

x

2n
, 0, 0, 0) + 2φ(

x

2n+1
,

x

2n+1
, 0, 0)

]
for all x ∈ X and all positive integers n. By (2.20), we have

∥4mF (
x

2m
)− 4nF (

x

2n
)∥ ≤

n−1∑
k=m

4k

|t|
[φ(

x

2k
, 0, 0, 0) + 2φ(

x

2k+1
,

x

2k+1
, 0, 0)](2.21)

for all x ∈ X and all positive integers m and n with m < n. This shows that the

sequence {4nF (
x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the
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sequence {4nF (
x

2n
)} converges in Y for all x ∈ X. So one can define a mapping

Q : X → Y by

Q(x) = lim
n→∞

4nF (
x

2n
) = lim

n→∞
4n

(
f(

x

2n
) +

1

3
(1− 4r

t
)f(0)

)
for all x ∈ X. We remark that Q(0) = 0 by the definition of Q if r = t, and also
Q(0) = 0 because of f(0) = 0 = φ(0, 0, 0, 0) by the convergence of Ψ(0, 0, 0, 0) if
r ̸= t. Thus, Q(0) = 0 for any nonzero real numbers r, t. Also, we get from (2.17)

∥DQ(x, y, z, w)∥ = lim
n→∞

4n∥DF (
x

2n
,
y

2n
,
z

2n
,
w

2n
)∥

≤ lim
n→∞

4n
[
∥Df(

x

2n
,
y

2n
,
z

2n
,
w

2n
)∥+ 4|r − t|

3
|1− 4r

t
|∥f(0)∥

]
≤ lim

n→∞
4nφ(

x

2n
,
y

2n
,
z

2n
,
w

2n
) = 0

for all x, y, z, w ∈ X. By Lemma 2.1, Q is quadratic. Putting m = 0 and letting
n → ∞ in (2.21), we get the estimation (2.18).

The proof of the uniqueness of Q is similar to that of Theorem 2.2. 2

Corollary 2.6. Let θ and p (p > 2) be positive real numbers. Let f : X → Y be a
mapping such that

∥Df(x, y, z, w)∥ ≤ θ(∥x∥p + ∥y∥p + ∥z∥p + ∥w∥p)

for all x, y, z, w ∈ X. Then there exists a unique quadratic mapping Q : X → Y
such that

∥f(x) + 1

3
(1− 4r

t
)f(0)−Q(x)∥ ≤ θ

|t|
(
2p + 4

2p − 4
)∥x∥p(2.22)

for all x ∈ X.

Proof. Defining φ(x, y, z, w) := θ(∥x∥p+∥y∥p+∥z∥p+∥w∥p) and applying Theorem
2.5 we get the desired result. 2

Remark 2.7. Let f : X → Y be a mapping for which there is a function φ : X4 →
[0,∞) satisfying (2.16) and (2.17). Then by putting f̃(x) = f(x)− f(0), x ∈ X, we
have from (2.17)

∥Df̃(x, y, z, w)∥ ≤ φ(x, y, z, w) + 4|r − t|∥f(0)∥.

First, we note that f(0) = 0 = φ(0, 0, 0, 0) by the convergence of Ψ(0, 0, 0, 0) if
r ̸= t, and so the term 4|r − t|∥f(0)∥ = 0 for any nonzero real numbers r, t. Thus,
we get from (2.15)

∥f̃(x)− 4f̃(
x

2
)∥ ≤ 1

|t|
[φ(x, 0, 0, 0) + 2φ(

x

2
,
x

2
, 0, 0)]
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for all x ∈ X. Hence, by applying the same argument as that of Theorem 2.5, one
can prove that there exists a unique quadratic mapping Q : X → Y such that

∥f(x)− f(0)−Q(x)∥ ≤ 1

4|t|
[Ψ(2x, 0, 0, 0) + 2Ψ(x, x, 0, 0)]

for all x ∈ X.
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