KYUNGPOOK Math. J. 55(2015), 73-81
http://dx.doi.org/10.5666/KMJ.2015.55.1.73
pISSN 1225-6951 eISSN 0454-8124
(C) Kyungpook Mathematical Journal

Refined Stability Results of Functional Equation in Four Variables

Hark-Mahn Kim and Soon Lee*
Department of Mathematics, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764, Korea
e-mail: hmkim@cnu.ac.kr and lsmath6256@hanmail.net
Abstract. In this paper, we present the general solution of the functional equation

$$
\begin{aligned}
& r f\left(\frac{x+y+z+w}{s}\right)+r f\left(\frac{x+y-z-w}{s}\right)+r f\left(\frac{x-y+z-w}{s}\right)+r f\left(\frac{x-y-z+w}{s}\right) \\
& =t f(x)+t f(y)+t f(z)+t f(w)
\end{aligned}
$$

and improve the Hyers-Ulam stability of the equation.

1. Introduction

In 1940, S.M. Ulam [12] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms: We are given a group G_{1} and a metric group G_{2} with metric $\varphi(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta>0$ such that if $f: G_{1} \rightarrow G_{2}$ satisfies $\varphi(f(x y), f(x) f(y))<\delta$ for all $x, y \in G_{1}$, then a homomorphism $h: G_{1} \rightarrow G_{2}$ exists with $\varphi(f(x), h(x))<\varepsilon$ for all $x \in G_{1}$?

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. D.H. Hyers [6] showed that if $\varepsilon>0$ and $f: X \rightarrow Y$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \varepsilon
$$

for all $x \in X$.

[^0]In 1950 T. Aoki [1] and in 1951 D.G. Bourgin [2] provided a generalized the Hyers theorem for additive mapping and in 1978 Th.M. Rassias [10] generalized the Hyers theorem for liner mapping by allowing the Cauchy difference to be unbounded. Let $f: X \rightarrow Y$ be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\varepsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Then Th.M. Rassias proved that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \varepsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. And then, the result of Th.M. Rassias theorem has been generalized by P. Gǎvruta [5] by allowing the Cauchy difference to be a generalized control function.

A square norm on an inner product space satisfies the important parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

which may be originated from this parallelogram equality, is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A Hyers-Ulam stability problem for the quadratic functional equation was proved by F. Skof [11] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. P.W. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In S. Czerwik [4] proved the Hyers-Ulam stability of the quadratic functional equation. In the last decade, S. Lee and K. Jun [7] and S. Lee and C. Park [8] have proved the Hyers-Ulam stability of quadratic type functional equation with three variables.

Recently, C. Park [9] has investigated the Hyers-Ulam stability of the following functional equation.

$$
\begin{gather*}
r f\left(\frac{x+y+z+w}{s}\right)+r f\left(\frac{x+y-z-w}{s}\right)+r f\left(\frac{x-y+z-w}{s}\right) \\
+r f\left(\frac{x-y-z+w}{s}\right)=t f(x)+t f(y)+t f(z)+t f(w) \tag{1.1}
\end{gather*}
$$

for all $x, y, z, w \in X$ under the assumption of an even mapping $f: X \rightarrow Y$ with $f(0)=0$. Throughout this paper, we now assume that r, s, t are nonzero real numbers, and that X and Y are a normed linear space with norm $\|\cdot\|$ and a Banach space with norm $\|\cdot\|$, respectively. In this paper, we establish the general solution of the functional equation (1.1) and then improve the Hyers-Ulam stability
of the functional equation without the even condition and $f(0)=0$ for a mapping $f: X \rightarrow Y$.

2. Stability of the Functional Equation in Four Variables

First of all, we solve the general solution of the equation (1.1).
Lemma 2.1. If a mapping $f: X \rightarrow Y$ satisfies the equation (1.1) for all $x, y, z, w \in$ X, then $f-f(0)$ is quadratic, and $f(0)=0$ if $r \neq t$.
Proof. First, we prove the case $r \neq t$.
Letting $x=y=z=w:=0$ in (1.1), one has $f(0)=0$. Putting $y=z=w:=0$ in (1.1), we have

$$
\begin{equation*}
4 r f\left(\frac{x}{s}\right)=t f(x) \tag{2.1}
\end{equation*}
$$

for all $x \in X$. Using (2.1) and (1.1), we get
(2.2) $f(x+y+z+w)+(x+y-z-w)+f(x-y+z-w)+f(x-y-z+w)$

$$
=4 f(x)+4 f(y)+4 f(z)+4 f(w)
$$

for all $x, y, z, w \in X$. We note that $f(y)=f(-y)$ by putting $x=z=w:=0$ in the last equation. Putting $z=w:=0$ in (2.2), we deduce

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$. So f is quadratic.
Next, we prove the case $r=t$. In this case, we see the functional equation

$$
\begin{aligned}
& f\left(\frac{x+y+z+w}{s}\right)+f\left(\frac{x+y-z-w}{s}\right)+f\left(\frac{x-y+z-w}{s}\right)+f\left(\frac{x-y-z+w}{s}\right) \\
& =f(x)+f(y)+f(z)+f(w)
\end{aligned}
$$

for all $x, y, z, w \in X$. Hence, putting $f(x)-f(0):=Q(x), x \in X$, one can easily observe the relation

$$
\begin{align*}
& Q\left(\frac{x+y+z+w}{s}\right)+Q\left(\frac{x+y-z-w}{s}\right)+Q\left(\frac{x-y+z-w}{s}\right) \\
& \quad+Q\left(\frac{x-y-z+w}{s}\right)=Q(x)+Q(y)+Q(z)+Q(w), \quad Q(0)=0 . \tag{2.3}
\end{align*}
$$

Putting $y=z=w:=0$ in (2.3), we have $4 Q\left(\frac{x}{s}\right)=Q(x)$, and so

$$
\begin{align*}
& Q(x+y+z+w)+Q(x+y-z-w)+Q(x-y+z-w) \\
& \quad+Q(x-y-z+w)=4(Q(x)+Q(y)+Q(z)+Q(w)) \tag{2.4}
\end{align*}
$$

for all $x, y, z, w \in X$. We observe that $Q(y)=Q(-y)$ by setting $x=z=w:=0$ in (2.4). Thus, by letting $z=w:=0$ in (2.4), one arrives at

$$
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)
$$

for all $x, y \in X$. So Q is quadratic.
We now prove the Hyers-Ulam stability of the functional equation without the even condition and $f(0)=0$ for a mapping $f: X \rightarrow Y$. Given a mapping $f: X \rightarrow Y$, we set for notational convenience

$$
\begin{aligned}
& D f(x, y, z, w) \\
& \quad=r f\left(\frac{x+y+z+w}{s}\right)+r f\left(\frac{x+y-z-w}{s}\right)+r f\left(\frac{x-y+z-w}{s}\right) \\
& \quad+r f\left(\frac{x-y-z+w}{s}\right)-[t f(x)+t f(y)+t f(z)+t f(w)]
\end{aligned}
$$

for all $x, y, z, w \in X$.
Theorem 2.2. Let $f: X \rightarrow Y$ be a mapping for which there is a function φ : $X^{4} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\Phi(x, y, z, w):=\sum_{j=0}^{\infty} \frac{1}{4^{j}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w\right)<\infty \tag{2.5}\\
\|D f(x, y, z, w)\| \leq \varphi(x, y, z, w) \tag{2.6}
\end{gather*}
$$

for all $x, y, z, w \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)-Q(x)\right\| \leq \frac{1}{4|t|}[\Phi(2 x, 0,0,0)+2 \Phi(x, x, 0,0)] \tag{2.7}
\end{equation*}
$$

for all $x \in X$, where $4|r-t|\|f(0)\| \leq \varphi(0,0,0,0)$.
Proof. Putting $y=z=w:=0$ in (2.6), we get

$$
\left\|4 r f\left(\frac{x}{s}\right)-t f(x)-3 t f(0)\right\| \leq \varphi(x, 0,0,0)
$$

and then replacing x by $2 x$, we have

$$
\begin{equation*}
\left\|4 r f\left(\frac{2 x}{s}\right)-t f(2 x)-3 t f(0)\right\| \leq \varphi(2 x, 0,0,0) \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Putting $y:=x$ and $z=w:=0$ in (2.6), we have

$$
\begin{equation*}
\left\|2 r f\left(\frac{2 x}{s}\right)+2 r f(0)-2 t f(x)-2 t f(0)\right\| \leq \varphi(x, x, 0,0) \tag{2.9}
\end{equation*}
$$

for all $x \in X$. By (2.8) and (2.9), we have

$$
\|t f(2 x)-4 t f(x)+(4 r-t) f(0)\| \leq \varphi(2 x, 0,0,0)+2 \varphi(x, x, 0,0)
$$

and so

$$
\left\|f(2 x)-4 f(x)+\frac{(4 r-t)}{t} f(0)\right\| \leq \frac{1}{|t|}[\varphi(2 x, 0,0,0)+2 \varphi(x, x, 0,0)]
$$

for all $x \in X$. Let $F(x)=f(x)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0), x \in X$. Then we lead to the crucial inequality due to the last functional inequality

$$
\begin{align*}
\|F(2 x)-4 F(x)\| & \leq \frac{1}{|t|}[\varphi(2 x, 0,0,0)+2 \varphi(x, x, 0,0)] \tag{2.10}\\
\left\|F(x)-\frac{F(2 x)}{4}\right\| & \leq \frac{1}{4|t|}[\varphi(2 x, 0,0,0)+2 \varphi(x, x, 0,0)]
\end{align*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|\frac{F\left(2^{n} x\right)}{4^{n}}-\frac{F\left(2^{n+1} x\right)}{4^{n+1}}\right\| & =\frac{1}{4^{n}}\left\|F\left(2^{n} x\right)-\frac{F\left(2 \cdot 2^{n} x\right)}{4}\right\| \\
& \leq \frac{1}{4^{n+1}|t|}\left[\varphi\left(2^{n+1} x, 0,0,0\right)+2 \varphi\left(2^{n} x, 2^{n} x, 0,0\right)\right] \tag{2.11}
\end{align*}
$$

for all $x \in X$ and all nonnegative integers n. Thus, it follows from (2.11) that

$$
\begin{equation*}
\left\|\frac{F\left(2^{m} x\right)}{4^{m}}-\frac{F\left(2^{n} x\right)}{4^{n}}\right\| \leq \sum_{k=m}^{n-1} \frac{1}{4^{k+1}|t|}\left[\varphi\left(2^{k+1} x, 0,0,0\right)+2 \varphi\left(2^{k} x, 2^{k} x, 0,0\right)\right] \tag{2.12}
\end{equation*}
$$

for all $x \in X$ and all nonnegative integers m and n with $m<n$. This shows that the sequence $\left\{\frac{F\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence for all $x \in X$ by the convergence of Φ. Since Y is complete, the sequence $\left\{\frac{F\left(2^{n} x\right)}{4^{n}}\right\}$ converges in Y for all $x \in X$. So one can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{F\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}
$$

for all $x \in X$. Obviously, $Q(0)=0$. It follows from (2.6) and the definition of Q that

$$
\begin{aligned}
\|D Q(x, y, z, w)\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|D f\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right)
\end{aligned}
$$

for all $x, y, z, w \in X$. By Lemma 2.1, the mapping Q is quadratic. Putting $m=0$ and letting $n \rightarrow \infty$ in (2.12), we get the desired approximation (2.7).

Now, let $Q^{\prime}: X \rightarrow Y$ be another quadratic mapping satisfying (2.7). Then we have

$$
\begin{aligned}
&\left\|Q(x)-Q^{\prime}(x)\right\|= \frac{1}{4^{n}}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{4^{n}}\left(\left\|Q\left(2^{n} x\right)-f\left(2^{n} x\right)-\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)\right\|\right. \\
&\left.\quad+\left\|f\left(2^{n} x\right)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)-Q^{\prime}\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{2}{4^{n+1}|t|}\left[\Phi\left(2^{n+1} x, 0,0,0\right)+2 \Phi\left(2^{n} x, 2^{n} x, 0,0\right)\right]
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of Q.

Corollary 2.3. Let θ and $p(0<p<2)$ be positive real numbers. Let $f: X \rightarrow Y$ be a mapping such that

$$
\|D f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)
$$

for all $x, y, z, w \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\left\|f(x)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)-Q(x)\right\| \leq \frac{\theta}{|t|}\left(\frac{4+2^{p}}{4-2^{p}}\right)\|x\|^{p}
$$

for all $x \in X$.
Proof. Defining $\varphi(x, y, z, w):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ and applying Theorem 2.2 , we get the desired result.

Remark 2.4. Let $f: X \rightarrow Y$ be a mapping for which there is a function $\varphi: X^{4} \rightarrow$ $[0, \infty)$ satisfying (2.5) and (2.6). Then by putting $\tilde{f}(x)=f(x)-f(0), x \in X$, we have from the functional inequality (2.6)

$$
\|D \tilde{f}(x, y, z, w)\| \leq \varphi(x, y, z, w)+4|r-t|\|f(0)\|
$$

which yields

$$
\begin{align*}
& \left\|4 r \tilde{f}\left(\frac{2 x}{s}\right)-t \tilde{f}(2 x)\right\| \leq \varphi(2 x, 0,0,0)+4|r-t|\|f(0)\| \tag{2.13}\\
& \left\|2 r \tilde{f}\left(\frac{2 x}{s}\right)-2 t \tilde{f}(x)\right\| \leq \varphi(x, x, 0,0)+4|r-t|\|f(0)\| \tag{2.14}
\end{align*}
$$

for all $x \in X$. By (2.13) and (2.14), one has

$$
\begin{equation*}
\|\tilde{f}(2 x)-4 \tilde{f}(x)\| \leq \frac{1}{|t|}[\varphi(2 x, 0,0,0)+2 \varphi(x, x, 0,0)+12|r-t|\|f(0)\|] \tag{2.15}
\end{equation*}
$$

for all $x \in X$. Thus, by applying the same argument as that of Theorem 2.2, one can prove that there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-f(0)-Q(x)\| \leq \frac{1}{4|t|}[\Phi(2 x, 0,0,0)+2 \Phi(x, x, 0,0)]+\frac{4|r-t|\|f(0)\|}{|t|}
$$

for all $x \in X$, where $4|r-t|\|f(0)\| \leq \varphi(0,0,0,0)$.
Next, we consider another stability problem which is an alternative stability result of Theorem 2.2.

Theorem 2.5. Let $f: X \rightarrow Y$ be a mapping for which there is a function φ : $X^{4} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\Psi(x, y, z, w):=\sum_{j=0}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, \frac{z}{2^{j}}, \frac{w}{2^{j}}\right)<\infty, \tag{2.16}\\
\|D f(x, y, z, w)\| \leq \varphi(x, y, z, w) \tag{2.17}
\end{gather*}
$$

for all $x, y, z, w \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that
(2.18) $\left\|f(x)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)-Q(x)\right\| \leq \frac{1}{|t|}\left[\Psi(x, 0,0,0)+2 \Psi\left(\frac{x}{2}, \frac{x}{2}, 0,0\right)\right]$
for all $x \in X$, where $4|r-t|\|f(0)\| \leq \varphi(0,0,0,0)$.
Proof. First, we note that $f(0)=0=\varphi(0,0,0,0)$ by the convergence of $\Psi(0,0,0,0)$ if $r \neq t$. Replacing x by $\frac{x}{2}$ in (2.10), we get

$$
\begin{equation*}
\left\|F(x)-4 F\left(\frac{x}{2}\right)\right\| \leq \frac{1}{|t|}\left[\varphi(x, 0,0,0)+2 \varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0\right)\right] \tag{2.19}
\end{equation*}
$$

for all $x \in X$. Using (2.19), we have

$$
\begin{align*}
\left\|4^{n} F\left(\frac{x}{2^{n}}\right)-4^{n+1} F\left(\frac{x}{2^{n+1}}\right)\right\| & =4^{n}\left\|F\left(\frac{x}{2^{n}}\right)-4 F\left(\frac{x}{2 \cdot 2^{n}}\right)\right\| \tag{2.20}\\
& \leq \frac{4^{n}}{|t|}\left[\varphi\left(\frac{x}{2^{n}}, 0,0,0\right)+2 \varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}, 0,0\right)\right]
\end{align*}
$$

for all $x \in X$ and all positive integers n. By (2.20), we have

$$
\begin{equation*}
\left\|4^{m} F\left(\frac{x}{2^{m}}\right)-4^{n} F\left(\frac{x}{2^{n}}\right)\right\| \leq \sum_{k=m}^{n-1} \frac{4^{k}}{|t|}\left[\varphi\left(\frac{x}{2^{k}}, 0,0,0\right)+2 \varphi\left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}}, 0,0\right)\right] \tag{2.21}
\end{equation*}
$$

for all $x \in X$ and all positive integers m and n with $m<n$. This shows that the sequence $\left\{4^{n} F\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the
sequence $\left\{4^{n} F\left(\frac{x}{2^{n}}\right)\right\}$ converges in Y for all $x \in X$. So one can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x)=\lim _{n \rightarrow \infty} 4^{n} F\left(\frac{x}{2^{n}}\right)=\lim _{n \rightarrow \infty} 4^{n}\left(f\left(\frac{x}{2^{n}}\right)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)\right)
$$

for all $x \in X$. We remark that $Q(0)=0$ by the definition of Q if $r=t$, and also $Q(0)=0$ because of $f(0)=0=\varphi(0,0,0,0)$ by the convergence of $\Psi(0,0,0,0)$ if $r \neq t$. Thus, $Q(0)=0$ for any nonzero real numbers r, t. Also, we get from (2.17)

$$
\begin{aligned}
\|D Q(x, y, z, w)\| & =\lim _{n \rightarrow \infty} 4^{n}\left\|D F\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 4^{n}\left[\left\|D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right\|+\frac{4|r-t|}{3}\left|1-\frac{4 r}{t}\right|\|f(0)\|\right] \\
& \leq \lim _{n \rightarrow \infty} 4^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}, \frac{w}{2^{n}}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in X$. By Lemma 2.1, Q is quadratic. Putting $m=0$ and letting $n \rightarrow \infty$ in (2.21), we get the estimation (2.18).

The proof of the uniqueness of Q is similar to that of Theorem 2.2.
Corollary 2.6. Let θ and $p(p>2)$ be positive real numbers. Let $f: X \rightarrow Y$ be a mapping such that

$$
\|D f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)
$$

for all $x, y, z, w \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)+\frac{1}{3}\left(1-\frac{4 r}{t}\right) f(0)-Q(x)\right\| \leq \frac{\theta}{|t|}\left(\frac{2^{p}+4}{2^{p}-4}\right)\|x\|^{p} \tag{2.22}
\end{equation*}
$$

for all $x \in X$.
Proof. Defining $\varphi(x, y, z, w):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ and applying Theorem 2.5 we get the desired result.

Remark 2.7. Let $f: X \rightarrow Y$ be a mapping for which there is a function $\varphi: X^{4} \rightarrow$ $[0, \infty)$ satisfying (2.16) and (2.17). Then by putting $\tilde{f}(x)=f(x)-f(0), x \in X$, we have from (2.17)

$$
\|D \tilde{f}(x, y, z, w)\| \leq \varphi(x, y, z, w)+4|r-t|\|f(0)\|
$$

First, we note that $f(0)=0=\varphi(0,0,0,0)$ by the convergence of $\Psi(0,0,0,0)$ if $r \neq t$, and so the term $4|r-t|\|f(0)\|=0$ for any nonzero real numbers r, t. Thus, we get from (2.15)

$$
\left\|\tilde{f}(x)-4 \tilde{f}\left(\frac{x}{2}\right)\right\| \leq \frac{1}{|t|}\left[\varphi(x, 0,0,0)+2 \varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0\right)\right]
$$

for all $x \in X$. Hence, by applying the same argument as that of Theorem 2.5, one can prove that there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-f(0)-Q(x)\| \leq \frac{1}{4|t|}[\Psi(2 x, 0,0,0)+2 \Psi(x, x, 0,0)]
$$

for all $x \in X$.
Acknowledgements. This research was supported by the Basic Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (NRF-2012R1A1A2008139).

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[2] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57(1951), 223-237.
[3] P. W. Cholewa, Remarks on the shability of functional equations, Aequationes Math., 27 (1984), 76-86.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
[5] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27(1941), 222-224.
[7] S. Lee and K. Jun,Hyers-Ulam-Rassias stability of a quadratic type functional equation, Bull. Korean Math. Soc., 40(2003), 183-193.
[8] S. Lee and C. Park, Hyers-Ulam-Rassias stability of a functional equation in three variables, J. Chungcheong Math. Soc., 16(2)(2003), 11-21.
[9] C. Park, Hyers-Ulam-Rassias stability of an even functional equation in four variables, Kyungpook Math J., 44(2)(2004), 299-304.
[10] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[11] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

[^0]: * Corresponding Author.

 Received March 30, 2013; accepted July 18, 2013.
 2010 Mathematics Subject Classification: 39B52, 39B82.
 Key words and phrases: quadratic functional equation, Hyers-Ulam stability.

