• 제목/요약/키워드: Kim functional equation

검색결과 216건 처리시간 0.026초

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

  • Kim, Gwang-Hui
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권4호
    • /
    • pp.397-411
    • /
    • 2010
  • In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: $f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$ ${\lambda}$: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.

SUPERSTABILITY OF THE p-RADICAL TRIGONOMETRIC FUNCTIONAL EQUATION

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.765-774
    • /
    • 2021
  • In this paper, we solve and investigate the superstability of the p-radical functional equations $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}f(x)g(y),\\f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)f(y),$$ which is related to the trigonometric(Kim's type) functional equations, where p is an odd positive integer and f is a complex valued function. Furthermore, the results are extended to Banach algebras.

ON THE SUPERSTABILITY FOR THE p-POWER-RADICAL SINE FUNCTIONAL EQUATION

  • Gwang Hui Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권3호
    • /
    • pp.801-812
    • /
    • 2023
  • In this paper, we investigate the superstability for the p-power-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from an approximation of the p-power-radical functional equation: $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)h(y),$$ where p is an odd positive integer and f, g, h are complex valued functions. Furthermore, the obtained results are extended to Banach algebras.

ON THE SUPERSTABILITY OF THE PEXIDER TYPE SINE FUNCTIONAL EQUATION

  • Kim, Gwang Hui
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.1-18
    • /
    • 2012
  • The aim of this paper is to investigate the superstability of the pexider type sine(hyperbolic sine) functional equation $f(\frac{x+y}{2})^{2}-f(\frac{x+{\sigma}y}{2})^{2}={\lambda}g(x)h(y),\;{\lambda}:\;constant$ which is bounded by the unknown functions ${\varphi}(x)$ or ${\varphi}(y)$. As a consequence, we have generalized the stability results for the sine functional equation by P. M. Cholewa, R. Badora, R. Ger, and G. H. Kim.

ON THE STABILITY OF PEXIDER TYPE TRIGONOMETRIC FUNCTIONAL EQUATIONS

  • Kim, Gwang Hui
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.369-378
    • /
    • 2008
  • The aim of this paper is to study the stability problem for the pexider type trigonometric functional equation f(x + y) − f(x−y) = 2g(x)h(y), which is related to the d'Alembert, the Wilson, the sine, and the mixed trigonometric functional equations.

  • PDF

ON THE STABILITY OF THE COSINE TYPE FUNCTIONAL EQUATION

  • Kim, Gwang-Hui
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권1호
    • /
    • pp.7-14
    • /
    • 2007
  • The aim of this paper is to study the superstability problem of the cosine type functional equation f(x+y)+f(x+${\sigma}y$)=2g(x)g(y).

  • PDF

THE STABILITY OF THE GENERALIZED FORM FOR THE GAMMA FUNCTIONAL EQUATION

  • Kim, Gwang-Hui;Lee, Young-Whan
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.45-50
    • /
    • 2000
  • The modified Hyers-Ulam-Rassias Stability Of the generalized form g(x+p) : $\phi$(x)g(x) for the Gamma functional equation shall be proved. As a consequence we obtain the stability theorems for the gamma functional equation.

  • PDF

TRANSFERRED SUPERSTABILITY OF THE p-RADICAL SINE FUNCTIONAL EQUATION

  • Kim, Gwang Hui;Roh, Jaiok
    • 충청수학회지
    • /
    • 제35권4호
    • /
    • pp.315-327
    • /
    • 2022
  • In this paper, we investigate the transferred superstability for the p-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from the p-radical functional equations: $$f({\sqrt[p]{x^p+y^p}})+f({\sqrt[p]{x^p-y^p}})={\lambda}g(x)g(y),\;\\f({\sqrt[p]{x^p+y^p}})+f({\sqrt[p]{x^p-y^p}})={\lambda}g(x)h(y),$$ where p is an odd positive integer, λ is a positive real number, and f is a complex valued function. Furthermore, the results are extended to Banach algebras. Therefore, the obtained result will be forced to the pre-results(p=1) for this type's equations, and will serve as a sample to apply it to the extension of the other known equations.

SOLUTION AND STABILITY OF AN EXPONENTIAL TYPE FUNCTIONAL EQUATION

  • Lee, Young-Whan;Kim, Gwang-Hui;Lee, Jae-Ha
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권2호
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper we generalize the superstability of the exponential functional equation proved by J. Baker et al. [2], that is, we solve an exponential type functional equation $$f(x+y)\;=\;a^{xy}f(x)f(y)$$ and obtain the superstability of this equation. Also we generalize the stability of the exponential type equation in the spirt of R. Ger[4] of the following setting $$|{\frac{f(x\;+\;y)}{{a^{xy}f(x)f(y)}}}\;-\;1|\;{\leq}\;{\delta}.$$

  • PDF

STABILITY OF THE RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Kim, Gwang Hui;Lee, Young Whan
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.311-322
    • /
    • 2010
  • In this paper, we prove stabilities of the reciprocal difference functional equation $$r(\frac{x+y+z}{3})-r(x+y+z)=\frac{2r(x)r(y)r(z)}{r(x)r(y)+r(y)r(z)+r(z)r(x)}$$ and the reciprocal adjoint functional equation $$r(\frac{x+y+z}{3})+r(x+y+z)=\frac{4r(x)r(y)r(z)}{r(x)r(y)+r(y)r(z)+r(z)r(x)}$$ with three variables. Stabilities of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables was proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar. We extend their results to three variables in similar types.