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SUPERSTABILITY OF THE p-RADICAL TRIGONOMETRIC

FUNCTIONAL EQUATION

Gwang Hui Kim

Abstract. In this paper, we solve and investigate the superstability of the p-radical
functional equations

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= λf(x)g(y),

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= λg(x)f(y),

which is related to the trigonometric(Kim’s type) functional equations, where p is
an odd positive integer and f is a complex valued function. Furthermore, the results
are extended to Banach algebras.

1. Introduction

In 1940, the stability problem of the functional equation was conjectured by Ulam
[22]. In 1941, Hyers [13] obtained a partial answer for the case of additive mapping
in this problem.

Thereafter, the stability of the functional equation was improved by Bourgin [8] in
1949, Aoki [3] in 1950, Th. M. Rassias [21] in 1978 and Gǎvruta [12] in 1994.

In 1979, Bakeret al. [7] announced the superstability as the new concept as follows:
If f satisfies |f(x+ y)− f(x)f(y)| ≤ ε for some fixed ε > 0, then either f is bounded
or f satisfies the exponential functional equation f(x+ y) = f(x)f(y).

D’Alembert [1] in 1769 (see Kannappen’s book [15]) introduced the cosine func-
tional equation

f(x+ y) + f(x− y) = 2f(x)f(y), (C)

and which superstability was proved by Baker [6] in 1980.
Baker’s result was generalized by Badora [4] in 1998 to a noncommutative group

under the Kannappen condition [14]: f(x + y + z) = f(x + z + y), and it again was
improved by Badora and Ger [5] in 2002 under the condition |f(x + y) + f(x− y)−
2f(x)f(y)| ≤ ϕ(x) or ϕ(y).

The cosine (d’Alembert) functional equation (C) was generalized to the following:

f(x+ y) + f(x− y) = 2f(x)g(y), (W )

f(x+ y) + f(x− y) = 2g(x)f(y), (K)
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in which (W ) is called the Wilson equation, and (K) arised by Kim was appeared in
Kannappen and Kim’s paper ( [16]).

The superstability of the cosine (C), Wilson (W ) and Kim (K) function equations
were founded in Badora, Ger, Kannappan and Kim ( [4, 5, 16,17]).

In 2009, Eshaghi Gordji and Parviz [11] introduced the radical functional equation
related to the quadratic functional equation

f
(√

x2 + y2
)

= f(x) + f(y). (R)

In [19], Kim introduced the trigonometric functional equation as the Pexider-type’s
as following:

f(x+ y)− f(x− y) = 2f(x)f(y), (−ff)

f(x+ y)− f(x− y) = 2g(x)f(y). (−gf)

f(x+ y)− f(x− y) = 2f(x)g(y), (−fg)

f(x+ y)− f(x− y) = λf(x)f(y), (−ff
λ)

f(x+ y)− f(x− y) = λf(x)g(y), (−fg
λ)

f(x+ y)− f(x− y) = λg(x)f(y). (−gf
λ)

Recently, Almahalebiet al. [2] obtained the superstability in Hyer’s sense for the
p-radical functional equations related to Wilson equation and Kim’s equation.

The aim of this paper is to solve and investigate the superstability in Gavurta’s
sense for the p-radical functional equations related to Kim’s equation. as following:

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= λf(x)f(y), (−ff

λ
r )

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= λf(x)g(y), (−fg

λ
r )

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= λg(x)f(y), (−gf

λ
r )

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= λg(x)g(y). (−gg

λ
r )

In this paper, let R be the field of real numbers, R+ = [0,∞) and C be the field of
complex numbers. We may assume that f is a nonzero function, ε is a nonnegative
real number, ϕ : R → R+ is a given nonnegative function and p is an odd positive
integer.

Let us denoted the equations

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= 2f(x)f(y), (−ffr)

f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
= 2g(x)f(y). (−gfr)

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= 2f(x)f(y), (ffr)

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= 2f(x)g(y), (fgr)

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= λf(x)f(y), (ffλr )

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= λf(x)g(y). (fgλr )
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2. Superstability of the p-radical equations (−gf
λ
r ) and (−fg

λ
r ).

In this section, we find a solution and investigate the superstability of p-radical
functional equations (−gf

λ
r ) and (−fg

λ
r ) related to the functional equations (−gf

λ)
and (−fg

λ) arised by Kim.

In the following lemmas, we find solutions of the functional equations (−ff
λ
r ),

(−fg
λ
r ) and (−gf

λ
r ), which confirm are easy.

Lemma 1. A function f : R → C satisfies (−ff
λ
r ) if and only if f(x) = F (xp)

for all x ∈ R, where F is a solution of (−ff
λ). In particular, for the case λ = 2, a

function f : R→ C satisfies (ffr) if and only if f(x) = cos(xp) for all x ∈ R, namely,
F is a solution of (C).

Lemma 2. A function f, g : R → C satisfies (−fg
λ
r ) if and only if f(x) = F (xp)

and g(x) = G(xp), where F and G are solutions of (−fg
λ). In particular, for the case

λ = 2, a function f, g : R → C satisfies (fgr) if and only if f(x) = F (xp) = sin(xp)
and g(x) = G(xp) = cos(xp), where F and G are solutions of equation (W ).

Lemma 3. A function f, g : R→ C satisfies the functional equation (−gf
λ
r ) if and

only if f(x) = F (xp) and g(x) = G(xp), where F and G are solutions of (−gf
λ). In

particular, for the case λ = 2, a function f, g : R → C satisfies (−gfr) if and only if
f(x) = F (xp) and g(x) = G(xp), where F and G are solutions of (−gf).

Now we investigate the superstability of the p-radical trigonometric functional equa-
tions (−gf

λ
r ) and (−fg

λ
r ).

Theorem 1. Assume that f, g : R→ C satisfy the inequality

|f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y)| ≤

{
(i) ϕ(x)

(ii) ϕ(y) and ϕ(x).
(2.1)

Then
(i) either f is bounded or g satisfies (ffλr ),
(ii) either g is bounded or g satisfies (ffλr ), and f and g satisfy (−gf

λ
r ) and (fgλr ).

Proof. (i) Assume that f is unbounded. Then we can choose {yn} such that 0 6=
|f(yn)| → ∞ as n→∞.

Putting y = yn in (2.1) and dividing both sides by λf(yn), we have∣∣∣∣∣∣
f
(

p
√
xp + ypn

)
− f

(
p
√
xp − ypn

)
λf(yn)

− g(x)

∣∣∣∣∣∣ ≤ ϕ(x)

λf(yn)
. (2.2)

As n→∞ in (2.2), we get

g(x) = lim
n→∞

f
(

p
√
xp + ypn

)
− f

(
p
√
xp − ypn

)
λf(yn)

(2.3)

for all x ∈ R.
Replacing y by p

√
yp + ypn and p

√
yp − ypn in (2.1), we obtain

|f
(

p
√
xp + (yp + ypn)

)
− f

(
p
√
xp − (yp + ypn)

)
− λg(x)f( p

√
yp + ypn)| ≤ ϕ(x), (2.4)
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|f
(

p
√
xp + (yp − ypn)

)
− f

(
p
√
xp − (yp − ypn)

)
− λg(x)f( p

√
yp − ypn)| ≤ ϕ(x), (2.5)

for all x, y, yn ∈ R.
By (2.4) - (2.5), we obtain

|f
(

p
√
xp + (yp + ypn)

)
− f

(
p
√
xp + (yp − ypn)

)
+ f

(
p
√
xp − (yp − ypn)

)
− f

(
p
√
xp − (yp + ypn)

)
− λg(x)[f( p

√
yp + ypn)− f( p

√
yp − ypn)]| ≤ 2ϕ(x)

for all x, y, yn ∈ R.
This implies that

|
f
(

p
√

(xp + yp) + ypn
)
− f

(
p
√

(xp + yp)− ypn
)

λf(yn)
(2.6)

+
f
(

p
√

(xp − yp) + ypn
)
− f

(
p
√

(xp − yp)− ypn
)

λf(yn)

− λg(x)
f( p
√
yp + ypn)− f( p

√
yp − ypn)

λf(yn)
| ≤ 2ϕ(x)

λf(yn)

for all x, y, yn ∈ R.
Letting n→∞ in (2.6), by applying (2.3), g satisfies the desired result (ffλr ).

(ii) First, we show that if f is bounded, then g is also bounded.
If f is bounded, then we choose y0 ∈ R such that f(y0) 6= 0, and then by (2.1) we

can obtain

|g(x)|−
∣∣∣∣f
(

p
√
xp + yp0

)
− f

(
p
√
xp − yp0

)
λf(y0)

∣∣∣∣
≤
∣∣∣∣f
(

p
√
xp + yp0

)
− f

(
p
√
xp − yp0

)
λf(y0)

− g(x)

∣∣∣∣ ≤ ϕ(y0)

λ|f(y0)|
(2.7)

and it follows that g is also bounded on R.
That is, if g is unbounded, then so is f . Hence, by (i), g also satisfies (ffλr ).
Let g be unbounded. Then f is also unbounded. So we can choose sequences {xn}

and {yn} in R such that g(xn) 6= 0 and |g(xn)| → ∞ , f(yn) 6= 0 and |f(yn)| → ∞ as
n→∞.

For the case ϕ(y) in (ii) of (2.1), taking x = xn, we deduce

lim
n→∞

f
(

p
√
xpn + yp

)
− f

(
p
√
xpn − yp

)
λg(xn)

= f(y) (2.8)

for all y ∈ R.
Replacing x by p

√
xpn + xp and p

√
xpn − xp in (2.1), we have

|f
(

p
√

(xpn + xp) + yp
)
− f

(
p
√

(xpn + xp)− yp
)
− λg(

p
√
xpn + xp)f(y) (2.9)

+ f
(

p
√

(xpn − xp) + yp
)
− f

(
p
√

(xpn − xp)− yp
)
− λg(

p
√
xpn − xp)f(y)| ≤ 2ϕ(y)

for all x, y ∈ R and all n ∈ N.
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Consequently,

|
f
(

p
√
xpn + (xp + yp)

)
− f

(
p
√
xpn − (xp + yp)

)
λg(xn)

−
f
(

p
√
xpn + (xp − yp)

)
− f

(
p
√
xpn − (xp − yp)

)
λg(xn)

− λg( p
√
xpn + xp) + g( p

√
xpn − xp)

λg(xn)
f(y)| ≤ 2ϕ(y)

λg(xn)
, (2.10)

for all x, y ∈ R and all n ∈ N.
Apply the limit (2.8) in (2.10) with the use of |g(xn)| → ∞ as n −→ ∞ . Since g

satisfies (ffλr ) by (i), f and g are solutions of (−gf
λ
r ),

Finally, replace (x, y) by ( p
√
xpn + yp, x) and replace (x, y) by ( p

√
xpn − yp, x) for ϕ(y)

in (ii) of (2.1), respectively. Let us follows the same procedure as from (2.9) to (2.10).
Then

|f
(

p
√

(xpn + yp) + xp
)
− f

(
p
√

(xpn + yp)− xp
)
− λg( p

√
xpn + yp)f(x)

+ f
(

p
√

(xpn − yp) + xp
)
− f

(
p
√

(xpn − yp)− xp
)
− λg( p

√
xpn − yp)f(x)| ≤ 2ϕ(x).

Hence we have

|
f
(

p
√
xpn + (xp + yp)

)
− f

(
p
√
xpn − (xp + yp)

)
λg(xn)

+
f
(

p
√
xpn + (xp − yp)

)
− f

(
p
√
xpn − (xp − yp)

)
λg(xn)

− λg( p
√
xpn + yp) + g( p

√
xpn − yp)

λg(xn)
f(x)| ≤ 2ϕ(x)

λg(xn)
, (2.11)

for all x, y ∈ R and all n ∈ N.
Then, by applying (2.8) and (i)’s result, it follows from (2.11) that f and g are

solutions of (fgλr ).

By a similar process of the proof of Theorem 2.1, we can prove the following
theorem.

Theorem 2. Assume that f, g : R→ C satisfy the inequality

|f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)g(y)| ≤

{
(i) ϕ(y)

(ii) ϕ(x) and ϕ(y).
(2.12)

Then
(i) either f(:odd) is bounded or g satisfies (−ff

λ
r ),

(ii) either g(with f :odd) is bounded or g satisfies (−ff
λ
r ), and f and g satisfy

(−fg
λ
r ).

Proof. (i) Let f is unbounded. then let us choose {xn} in R such that 0 6=
|f(xn))| → ∞ as n→∞.
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Taking x = xn (with n ∈ N) in (2.12), dividing both sides by |λ·f(xn)|, and passing
to the limit as n→∞, we obtain that

g(y) = lim
n→∞

f
(

p
√
xpn + yp

)
− f

(
p
√
xpn − yp

)
λf(xn)

(2.13)

for all y ∈ R.
Replace x by p

√
xpn + xp and p

√
−xpn + xp in (2.12). Thereafter we go through the

same procedure as in (2.4) ∼ (2.6) of Theorem 1. Then, by oddness of f , we obtain

∣∣f
(

p
√

(xpn + xp) + yp
)

+ f
(

p
√

(−xpn + xp) + yp
)

λf(xn)

−
f
(

p
√

(xpn + xp)− yp
)

+ f
(

p
√

(−xpn + xp)− yp
)

λf(xn)

− λf( p
√
xpn + xp) + f( p

√
−xpn + xp)

λf(xn)
g(y)

∣∣
= |

f
(

p
√
xpn + (xp + yp)

)
− f

(
p
√
xpn − (xp + yp)

)
λf(xn)

(2.14)

−
f
(

p
√
xpn + (xp − yp)

)
− f

(
p
√
xpn − (xp − yp)

)
λf(xn)

− λf( p
√
xpn + xp)− f( p

√
xpn − xp)

λf(xn)
g(y)| ≤ 2ϕ(y)

λf(xn)
.

Since the right-hand side of the inequality converges to zero as n → ∞ in (2.14),
by (2.13), g satisfies (−ff

λ
r ).

(ii) if f is bounded, then we choose x0 ∈ R such that f(x0) 6= 0, and then in (2.12)
we can obtain

|g(y)|−
∣∣∣∣f
(

p
√
xp0 + yp

)
− f

(
p
√
xp0 − yp

)
λf(x0)

∣∣∣∣
≤
∣∣∣∣f
(

p
√
xp0 + yp

)
− f

(
p
√
xp0 − yp

)
λf(x0)

− g(y)

∣∣∣∣ ≤ ϕ(x0)

λ|f(x0)|
(2.15)

and it follows that g is also bounded on R.
That is, assume g is unbounded, then so is f . Hence, by (i), g satisfies (−ff

λ).

Let us choose {yn} in R such that 0 6= |g(yn)| → ∞ as n→∞.
As before, for the chosen sequence {yn}, we obtain that

f(x) = lim
n→∞

f
(

p
√
xp + ypn

)
− f

(
p
√
xp − ypn

)
λg(yn)

(2.16)

for all x ∈ R
Let go through the same procedure as in (2.4) ∼ (2.6) of Theorem 1 as above.

First, Replace x by p
√
xp + ypn and p

√
xp − ypn in (2.12), respectively, from replaced

p
√
xp + ypn difference to replaced p

√
xp − ypn, next divided by λg(yn).
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Then we obtain

|f
(

p
√
xp + ypn + yp

)
− f

(
p
√
xp + ypn − yp

)
− λf( p

√
xp + ypn)g(y)

− f
(

p
√
xp − ypn + yp

)
+ f

(
p
√
xp − ypn − yp

)
+ λf( p

√
xp − ypn)g(y)|

= |
f
(

p
√
xp + yp + ypn

)
− f

(
p
√
xp + yp − ypn

)
λg(yn)

(2.17)

−
f
(

p
√
xp − yp + ypn

)
− f

(
p
√
xp − yp − ypn

)
λg(yn)

− λf( p
√
xp + ypn)− f( p

√
xp − ypn)

λg(yn)
g(y)| ≤ 2ϕ(x)

λg(yn)
.

Since the right-hand side of the inequality converges to zero as n → ∞ in (2.17), f
and g satisfy the required (−fg

λ
r ) from (2.16) and (2.17).

The following corollaries follow immediate from Theorems 1 and 2.

Corollary 1. Assume that f, g : R→ C satisfy the inequality

|f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y)| ≤ ε.

Then
(i) either f is bounded or g satisfies (ffλr ),
(ii) either g is bounded or g satisfies (ffλr ), and f and g satisfy (−gf

λ
r ) and (fgλr ).

Corollary 2. Assume that f, g : R→ C satisfy the inequality

|f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)g(y)| ≤ ε.

Then
Then
(i) either f(:odd) is bounded or g satisfies (−ff

λ
r ),

(ii) either g(with f :odd) is bounded or g satisfies (−ff
λ
r ), and f and g satisfy

(−fg
λ
r ).

Corollary 3. Assume that f, g : R→ C satisfy the inequality

|f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)f(y)| ≤


(i) ϕ(x),

(ii) ϕ(y),

(iii) ε.

Then either f is bounded or f satisfies (−ff
λ),

Remark 1. In results, letting p = 1 or λ = 2, one can obtain (C), (W ), (K),
(−ff

λ), (−fg
λ), (−gf

λ). Hence they can be applied to stability results of cosine,
Wilson, Kim, trigonometric functional equations, etc. See Badora [4], Badora and
Ger [5], Baker [6], Fassi, et al. [10], Kannappan and Kim [16], [17,19], and Almahalebi,
et al. [2]. Letting p = 2, 3, 4 and λ = 1, 2, we can obtain the other functional equations.
If the obtained results can be extend to them, then it will be applied similarly to
stability results.
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3. Extension to Banach algebras

In this section, we will extend our main results to Banach algebras.

Theorem 3. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra. Assume
that f, g : R→ E satisfy the inequality

‖f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y)‖ ≤

{
(i) ϕ(x)

(ii) ϕ(y) and ϕ(x).
(3.1)

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ f is unbounded, then g satisfies (ffλr ).
(ii) If z∗ ◦ g is unbounded, then g satisfies (ffλr ), and f and g satisfy (−gf

λ
r ) and

(fgλr ).

Proof. Assume that (6) holds and let z∗ ∈ E∗ be a linear multiplicative functional.
Since ‖z∗‖ = 1, for all x, y ∈ R, we have

ϕ(x) ≥ ‖f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y)‖

= sup
‖z∗‖=1

∣∣z∗(f ( p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y)

)∣∣
≥
∣∣z∗(f ( p

√
xp + yp

) )
− z∗

(
f
(

p
√
xp − yp

) )
− λ · z∗

(
g(x)

)
· z∗
(
f(y)

)∣∣,
which states that the superpositions z∗ ◦ f and z∗ ◦ g yield solutions of the inequality
(2.1) in Theorem 1.

Hence we can apply to (i) of Theorem 1.
(i) Since, by assumption, the superposition z∗ ◦ f is unbounded, an appeal to

Theorem 1 shows that the superposition z∗ ◦ g is a solution of (ffλr ), that is,

(z∗ ◦ g)
(

p
√
xp + yp

)
+ (z∗ ◦ g)

(
p
√
xp − yp

)
= λ(z∗ ◦ g)(x)(z∗ ◦ g)(y).

Since z∗ is a linear multiplicative functional, we get

z∗
(
g
(

p
√
xp + yp

)
+ g
(

p
√
xp − yp

)
− λg(x)g(y)

)
= 0.

Hence an unrestricted choice of z∗ implies that

g
(

p
√
xp + yp

)
+ g
(

p
√
xp − yp

)
− λg(x)g(y) ∈

⋂
{ker z∗ : z∗ ∈ E∗}.

Since E is a semisimple Banach algebra,
⋂
{ker z∗ : z∗ ∈ E∗} = 0, which means

that g satisfies the claimed equation (ffλr ).
(ii) By assumption, the superposition z∗ ◦ g is unbounded, an appeal to Theorem

1 shows that the results hold.
From a similar process as in (2.15) of Theorem 1, we can show that the unbound-

edness of the superposition z∗ ◦ g implies the unboundedness of the superposition
z∗ ◦ f .

First, it follows from the above result (i) that g satisfies the claimed equation
(−ff

λ
r ).

Next, an appeal to Theorem 1 shows that z∗ ◦ f and z∗ ◦ g are solutions of the
equations (−gf

λ
r ) and (−fg

λ
r ), that is,

(z∗ ◦ f)
(

p
√
xp + yp

)
− (z∗ ◦ f)

(
p
√
xp − yp

)
= λ(z∗ ◦ g)(x)(z∗ ◦ f)(y),

(z∗ ◦ f)
(

p
√
xp + yp

)
− (z∗ ◦ f)

(
p
√
xp − yp

)
= λ(z∗ ◦ f)(x)(z∗ ◦ g)(y).
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This means by a linear multiplicativity of z∗ that the differences

DKλ(x, y) :=f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y),

DW λ(x, y) :=f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)g(y)

fall into the kernel of z∗. That is, z∗
(
DKλ(z, w)

)
= 0 and z∗

(
DW λ(z, w)

)
= 0.

Hence an unrestricted choice of z∗ implies that

DKλ(x, y), DW λ(x, y) ∈
⋂
{ker z∗ : z∗ ∈ E∗}.

Since the algebra E is semisimple,
⋂
{ker z∗ : z∗ ∈ E∗} = 0, which means that f

and g satisfy the claimed equations (−gf
λ) and (fgλr ).

Corollary 4. Let (E, ‖·‖) be a semisimple commutative Banach algebra. Assume
that f, g : R→ E satisfy the inequality

‖f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λg(x)f(y)‖ ≤ ε.

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ f is unbounded, then g satisfies (ffλr ).
(ii) If z∗ ◦ g is unbounded, then g satisfies (ffλr ), and f and g satisfy (−gf

λ
r ) and

(fgλr ).

By a same procedure as Theorem 3 , we can prove the next theorem as an extension
of Theorem 2.

Theorem 4. Let (E, ‖ · ‖) be a semisimple commutative Banach algebra. Assume
that f, g : R→ E satisfy the inequality

‖f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)g(y)‖ ≤

{
(i) ϕ(y)

(ii) ϕ(x) and ϕ(y).
(3.2)

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional, f is odd.
(i) If z∗ ◦ f is unbounded, then g satisfies (−ff

λ).
(ii) If z∗ ◦ g is unbounded, then g satisfies (−ff

λ
r ), and f and g satisfy (−fg

λ
r ).

Corollary 5. Let (E, ‖·‖) be a semisimple commutative Banach algebra. Assume
that f, g : R→ E satisfy the inequality

‖f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)g(y)‖ ≤ ε.

Let z∗ ∈ E∗ be an arbitrary linear multiplicative functional.
(i) If z∗ ◦ f is unbounded, then g satisfies (−ff

λ).
(ii) If z∗ ◦ g (or z∗ ◦ f) is unbounded, then g satisfies (−ff

λ), and f and g satisfy
(−fg

λ
r ).

Corollary 6. Let (E, ‖·‖) be a semisimple commutative Banach algebra. Assume
that f, g : R→ E satisfy the inequality

‖f
(

p
√
xp + yp

)
− f

(
p
√
xp − yp

)
− λf(x)f(y)‖ ≤


(i) ϕ(x)

(ii) ϕ(y)

(iii) ε.

Then either the superposition z∗ ◦ f is bounded for each linear multiplicative func-
tional z∗ ∈ E∗ or f satisfies (−ff

λ
r ).
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Remark 2. Letting p = 1 or λ = 2, then the considered equations impliy (C),
(W ), (K), (−ff), (−gf), (−fg). Hence they can be appled to stability results of
cosine, Wilson, Kim, trigonometric functional equations combined with the minus
(See [2, 4, 5, 16–20]).
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