The 6th International Conference on Construction Engineering and Project Management
/
pp.671-672
/
2015
Due to harsh conditions of disaster areas, understanding of current feature of collapsed buildings, terrain, and other infrastructures is critical issue for disaster managers. However, because of difficulties in acquiring the geographical information of the disaster site such as large disaster site and limited capability of rescue workers, comprehensive site investigation of current location of survivors buried under the remains of the building is not an easy task for disaster managers. To overcome these circumstances of disaster site, this study makes use of an unmanned aerial vehicle, commonly known as a drone to effectively acquire current image data from the large disaster areas. The framework of 3D model reconstruction of disaster site using aerial imagery acquired by drones was also presented. The proposed methodology is expected to assist rescue workers and disaster managers in achieving a rapid and accurate identification of survivors under the collapsed building.
Purpose: The purpose of this paper is to present a probability distribution of the burst pressure of API 5L X65 pipes for the reliability assessment of corroded gas pipelines. Methods: Corrosion is a major cause of weakening the residual strength of the pipe. The mean residual strength on the corrosion defect can be obtained using the burst pressure code. However, in order to obtain the pipe reliability, a probability distribution of the burst pressure should be provided. This study is concerned with estimating the burst pressure distribution using Monte Carlo simulation. A response surface method is employed to represent the distribution parameter as a model of the corrosion defect size. Results: The experimental results suggest that the normal or Weibull distribution should be suitable as the probability distribution of the burst pressure. In particular, it was shown that the probability distribution parameters can be well predicted by using the depth and length of the corrosion defect. Conclusion: Given a corrosion defect on the pipe, its corresponding burst pressure distribution can be provided at instant. Subsequently, a reliability assessment of the pipe is conducted as well.
본 논문에서는 800V 배터리 전기자동차 LDC용 낮은 스위치 전압정격을 갖는 새로운 소프트 스위칭 하프브리지 컨버터를 제안한다. 제안하는 컨버터는 입력이 직렬구조로써 입력전압의 절반으로 낮은 스위치의 전압정격을 갖기 때문에 600V의 Si-MOSFET를 사용할 수 있어 도통손실을 줄일 수 있으며 부분공진 동작으로 스위칭 손실 저감 효과를 갖고, 넓은 입력전압 및 부하영역에서 소프트 스위칭을 성취하여 높은 효율을 달성할 수 있으며 변압기의 직렬연결로 된 커패시터로 인해 자화 전류의 오프셋이 없다. 제안하는 소프트 스위칭 컨버터의 동작원리를 제시하고 시작품을 통해 본 논문의 타당성을 검증하였다.
With the availability of big customer data and advances in machine learning techniques, the prediction of customer behavior at the session-level has attracted considerable attention from marketing practitioners and scholars. This study aims to predict customer purchase conversion at the session-level by employing customer profile, transaction, and clickstream data. For this purpose, we develop a multimodal deep learning fusion model with dynamic and static features (i.e., DS-fusion). Specifically, we base page views within focal visist and recency, frequency, monetary value, and clumpiness (RFMC) for dynamic and static features, respectively, to comprehensively capture customer characteristics for buying behaviors. Our model with deep learning architectures combines these features for conversion prediction. We validate the proposed model using real-world e-commerce data. The experimental results reveal that our model outperforms unimodal classifiers with each feature and the classical machine learning models with dynamic and static features, including random forest and logistic regression. In this regard, this study sheds light on the promise of the machine learning approach with the complementary method for different modalities in predicting customer behaviors.
Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.
Purpose: This paper introduces the technology of prognostics for Industry 4.0 and presents its application procedure for fitness-for-service assessment of natural gas pipelines according to ISO 13374 framework. Methods: Combining data-driven approach with pipe failure models, we present a hybrid scheme for the gas pipeline prognostics. The probability of pipe failure is obtained by using the PCORRC burst pressure model and First Order Second Moment (FOSM) method. A fuzzy inference system is also employed to accommodate uncertainty due to corrosion growth and defect occurrence. Results: With a modified field dataset, the probability of failure on the pipeline is calculated. Then, its residual useful life (RUL) is predicted according to ISO 16708 standard. As a result, the fitness-for-service of the test pipeline is well-confirmed. Conclusion: The framework described in ISO 13374 is applicable to the RUL prediction and the fitness-for-service assessment for gas pipelines. Therefore, the technology of prognostics is helpful for safe and efficient management of gas pipelines in Industry 4.0.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.3966-3991
/
2018
Due to the lack of visualization services and organic combinations between public and private buildings data, the usability of the basic map has remained low. To address this issue, this paper reports on a solution that organically combines public and private data while providing visualization services to general users. For this purpose, factors that can affect building prices first were examined in order to define the related data attributes. To extract the relevant data attributes, this paper presents a method of acquiring public information data and real estate-related information, as provided by private real estate portal sites. The paper also proposes a pretreatment process required for intelligent machine learning. This report goes on to suggest an intelligent machine learning algorithm that predicts buildings' value pricing and future value by using big data regarding buildings' spatial information, as acquired from a database containing building value attributes. The algorithm's availability was tested by establishing a prototype targeting pilot areas, including Suwon, Anyang, and Gunpo in South Korea. Finally, a prototype visualization solution was developed in order to allow general users to effectively use buildings' value ranking and value pricing, as predicted by intelligent machine learning.
In this work, an indigenous microbial consortium was obtained by selectively cultivating microbes using a long-aged petroleum-contaminated soil (Kuwait) containing recalcitrant petroleum hydrocarbons. The obtained microbial consortium was able to grow on and degrade the remaining petroleum hydrocarbons which could not have been utilized by the indigenous microbes in the original Kuwait soil. The following microbial community analysis using 16S rRNA gene sequencing suggested that the enhanced degradation of the remaining recalcitrant petroleum hydrocarbons by the novel microbial consortium may have been attributed to the selected bacterial populations belonging to Bacillus, Burkholderia, Sphingobacterium, Lachnospiraceae, Prevotella, Haemophilus, Pseudomonas, and Neisseria.
악성코드에 대한 빠른 대응을 위해서는 악성코드에 대한 효율적인 분석이 필요하다. 그 중 하나로, 오픈 소스 함수들과 같이 안전한 것으로 확인된 부분을 분석 대상에서 제외하여 방대한 분석 대상을 줄이는 방법이 도움이 될 수 있다. 본 논문은 여러 오픈소스의 동적 링크 라이브러리 파일을 윈도우 환경에서 생성하여 오픈소스의 함수 정보들을 버전별, 컴파일러별로 시그니처 정보를 추출하고 비교하여 변경이 의심스러운 함수를 찾을 수 있는 자동화 도구를 제시한다. 또한 해당 도구는 비교에 사용된 정보들을 DB에 저장, 추후에 사용할 수 있어 분석 시간 오버헤드를 줄일 수 있다.
JSTS:Journal of Semiconductor Technology and Science
/
제1권2호
/
pp.103-110
/
2001
Gate oxide scaling for sub-l00nm CMOS devices has been studied. Issues on the gate oxide scaling are reviewed, which are boron penetration, reliability, and direct tunneling leakage currents. Reliability of Sub-2.0nm oxides and the device performance degradation due to boron penetration are investigated. Especially, the effect of gate leakage currents on the transistor characteristics is studied. As a result, it is proposed that thinner oxides than previous expectations may be usable as scaling proceeds. Based on the gate oxide thickness optimization process we have established, high performance CMOS transistors of $L_{gate}=70nm$ and $T_{ox}=1.4nm$ were fabricated, which showed excellent current drives of $860\mu\textrm{A}/\mu\textrm{m}$ (NMOS) and $350\mu\textrm{A}/\mu\textrm{m}$ (PMOS) at $I_{off}=10\mu\textrm{A}/\mu\textrm{m}$ and $V_dd=1.2V$, and CV/I of 1.60ps (NMOS) and 3.32ps(PMOS).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.