DOI QR코드

DOI QR Code

Predicting Session Conversion on E-commerce: A Deep Learning-based Multimodal Fusion Approach

  • Minsu Kim (LG UPlus Corporation) ;
  • Woosik Shin (Graduate School of Information, Yonsei University) ;
  • SeongBeom Kim (Graduate School of Information, Yonsei University) ;
  • Hee-Woong Kim (Graduate School of Information, Yonsei University)
  • Received : 2023.01.13
  • Accepted : 2023.07.10
  • Published : 2023.09.30

Abstract

With the availability of big customer data and advances in machine learning techniques, the prediction of customer behavior at the session-level has attracted considerable attention from marketing practitioners and scholars. This study aims to predict customer purchase conversion at the session-level by employing customer profile, transaction, and clickstream data. For this purpose, we develop a multimodal deep learning fusion model with dynamic and static features (i.e., DS-fusion). Specifically, we base page views within focal visist and recency, frequency, monetary value, and clumpiness (RFMC) for dynamic and static features, respectively, to comprehensively capture customer characteristics for buying behaviors. Our model with deep learning architectures combines these features for conversion prediction. We validate the proposed model using real-world e-commerce data. The experimental results reveal that our model outperforms unimodal classifiers with each feature and the classical machine learning models with dynamic and static features, including random forest and logistic regression. In this regard, this study sheds light on the promise of the machine learning approach with the complementary method for different modalities in predicting customer behaviors.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. 2022R1F1A1073133).

References

  1. Baumann, A., Haupt, J., Gebert, F., and Lessmann, S. (2018). Changing perspectives: Using graph metrics to predict purchase probabilities. Expert Systems with Applications, 94, 137-148. https://doi.org/10.1016/j.eswa.2017.10.046 
  2. Baumann, A., Haupt, J., Gebert, F., and Lessmann, S. (2019). The price of privacy. Business & Information Systems Engineering, 61(4), 413-431. https://doi.org/10.1007/s12599-018-0528-2 
  3. Bigon, L., Cassani, G., Greco, C., Lacasa, L., Pavoni, M., Polonioli, A., and Tagliabue, J. (2019). Prediction is very hard, especially about conversion. Predicting user purchases from clickstream data in fashion e-commerce. arXiv preprint arXiv:1907.00400.
  4. Bogina, V., and Kuflik, T. (2017). Incorporating dwell time in session-based recommendations with recurrent neural networks. In CEUR Workshop Proceedings, (Vol. 1922 pp. 57-59). 
  5. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2 
  6. Bucklin, R. E., and Sismeiro, C. (2003). A model of web site browsing behavior estimated on clickstream data. Journal of Marketing Research, 40(3), 249-267. https://doi.org/10.1509/jmkr.40.3.249.19241 
  7. Bucklin, R. E., and Sismeiro, C. (2009). Click here for internet insight: Advances in clickstream data analysis in marketing. Journal of Interactive Marketing, 23(1), 35-48. https://doi.org/10.1016/j.intmar.2008.10.004 
  8. Chaudhuri, N., Gupta, G., Vamsi, V., and Bose, I. (2021). On the platform but will they buy? Predicting customers' purchase behavior using deep learning. Decision Support Systems, 149, 113622. https://doi.org/10.1016/j.dss.2021.113622 
  9. Chen, D., Sain, S. L., and Guo, K. (2012). Data mining for the online retail industry: A case study of RFM model-based customer segmentation using data mining. Journal of Database Marketing & Customer Strategy Management, 19(3), 197-208. https://doi.org/10.1057/dbm.2012.17 
  10. Choi, H., Kim, D., Kim, J., Kim, J., and Kang, P. (2022). Explainable anomaly detection framework for predictive maintenance in manufacturing systems. Applied Soft Computing, 125, 109147. 
  11. Digital Commerce 360. (2021). US ecommerce grows 44.0% in 2020. Retrieved from https://www.digitalcommerce360.com/article/us-ecommerce-sales/#:~text=Online%20spending%20represented%2021.3%25%20of,to%20Digital%20Commerce%20360%20estimates.&text=Online's%20share%20of%20total%20retail,2019%20and%2014.3%25%20in%202018 
  12. Dong, Y., Gao, S., Tao, K., Liu, J., and Wang, H. (2014). Performance evaluation of early and late fusion methods for generic semantics indexing. Pattern Analysis and Applications, 17(1), 37-50. https://doi.org/10.1007/s10044-013-0336-8 
  13. Esmeli, R., Bader-El-Den, M., and Abdullahi, H. (2022). An analyses of the effect of using contextual and loyalty features on early purchase prediction of shoppers in e-commerce domain. Journal of Business Research, 147, 420-434. https://doi.org/10.1016/j.jbusres.2022.04.012 
  14. Fader, P. S., Hardie, B. G., and Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415-430. https://doi.org/10.1509/jmkr.2005.42.4.415 
  15. Gao, J., Li, P., Chen, Z., and Zhang, J. (2020). A survey on deep learning for multimodal data fusion. Neural Comput, 32(5), 829-864. https://doi.org/10.1162/neco_a_01273 
  16. Glodek, M., Reuter, S., Schels, M., Dietmayer, K., and Schwenker, F. (2013). Kalman filter based classifier fusion for affective state recognition. In Z. H. Zhou, F. Roli, and J. Kittler (Eds.), Multiple Classifier Systems. Berlin, Heidelberg. 
  17. Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5), 602-610. https://doi.org/10.1016/j.neunet.2005.06.042 
  18. Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., and Mao, L. (2019). MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Computers & Security, 83, 208-233. https://doi.org/10.1016/j.cose.2019.02.007 
  19. He, H., and Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley-IEEE Press. 
  20. Herhausen, D., Miocevic, D., Morgan, R. E., and Kleijnen, M. H. P. (2020). The digital marketing capabilities gap. Industrial Marketing Management, 90, 276-290. https://doi.org/10.1016/j.indmarman.2020.07.022 
  21. Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 
  22. Hu, D., Wang, C., Nie, F., and Li, X. (2019). Dense multimodal fusion for hierarchically joint representation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK. 
  23. Iwanaga, J., Nishimura, N., Sukegawa, N., and Takano, Y. (2016). Estimating product-choice probabilities from recency and frequency of page views. Knowledge-Based Systems, 99, 157-167. https://doi.org/10.1016/j.knosys.2016.02.006 
  24. Jamal, Z., and Bucklin, R. E. (2006). Improving the diagnosis and prediction of customer churn: A heterogeneous hazard modeling approach. Journal of Interactive Marketing, 20(3-4), 16-29. https://doi.org/10.1002/dir.20064 
  25. Kim, E. Y., and Kim, Y. K. (2004). Predicting online purchase intentions for clothing products. European Journal of Marketing, 38(7), 883-897. https://doi.org/10.1108/03090560410539302 
  26. Koehn, D., Lessmann, S., and Schaal, M. (2020). Predicting online shopping behaviour from clickstream data using deep learning. Expert Systems with Applications, 150, 113342. https://doi.org/10.1016/j.eswa.2020.113342 
  27. Lariviere, B., and Van den Poel, D. (2005). Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications, 29(2), 472-484. https://doi.org/10.1016/j.eswa.2005.04.043 
  28. Law, M., and Ng, M. (2016). Age and gender differences: Understanding mature online users with the online purchase intention model. Journal of Global Scholars of Marketing Science, 26(3), 248-269. https://doi.org/10.1080/21639159.2016.1174540 
  29. Lee, S., and Choeh, J. Y. (2014). Predicting the helpfulness of online reviews using multilayer perceptron neural networks. Expert Systems with Applications, 41(6), 3041-3046. https://doi.org/10.1016/j.eswa.2013.10.034 
  30. Ling, C. X., and Li, C. (1998). Data mining for direct marketing: problems and solutions. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. New York, NY. 
  31. Liu, A., Tan, Z., Li, X., Wan, J., Escalera, S., Guo, G., and Li, S. Z. (2019). Static and dynamic fusion for multi-modal cross-ethnicity face anti-spoofing. arXiv preprint arXiv:1912.02340. 
  32. Lu, L., Dunham, M., and Meng, Y. (2005). Mining significant usage patterns from clickstream data. In International Workshop on Knowledge Discovery on the Web. Berlin, Heidelberg. 
  33. Moe, W. W., and Fader, P. S. (2004). Dynamic Conversion Behavior at E-Commerce Sites. Management Science, 50(3), 326-335. https://doi.org/10.1287/mnsc.1040.0153 
  34. Mokryn, O., Bogina, V., and Kuflik, T. (2019). Will this session end with a purchase? Inferring current purchase intent of anonymous visitors. Electronic Commerce Research and Applications, 34, 100836. https://doi.org/10.1016/j.elerap.2019.100836 
  35. Moro, S., Cortez, P., and Rita, P. (2015). Using customer lifetime value and neural networks to improve the prediction of bank deposit subscription in telemarketing campaigns. Neural Computing and Applications, 26(1), 131-139. https://doi.org/10.1007/s00521-014-1703-0 
  36. Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1. https://doi.org/10.1186/s40537-014-0007-7 
  37. Ndubisi, N. O. (2006). Effect of gender on customer loyalty: A relationship marketing approach. Marketing Intelligence & Planning, 24(1), 48-61. https://doi.org/10.1108/02634500610641552 
  38. Ogonowski, P. (2021). Ecommerce Conversion Rate Statistics. Retrieved from https://www.growcode.com/blog/ecommerce-conversion-rate 
  39. Park, C. H., and Park, Y.-H. (2016). Investigating purchase conversion by uncovering online visit patterns. Marketing Science, 35(6), 894-914. https://doi.org/10.1287/mksc.2016.0990 
  40. Poria, S., Cambria, E., Bajpai, R., and Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003 
  41. Poria, S., Cambria, E., and Gelbukh, A. (2015). Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal. 
  42. Rahim, M. A., Mushafiq, M., Khan, S., and Arain, Z. A. (2021). RFM-based repurchase behavior for customer classification and segmentation. Journal of Retailing and Consumer Services, 61, 102566. https://doi.org/10.1016/j.jretconser.2021.102566 
  43. Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A., and Chandran, V. (2019). Automatic driver stress level classification using multimodal deep learning. Expert Systems with Applications, 138, 112793. https://doi.org/10.1016/j.eswa.2019.07.010 
  44. Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15-26. https://doi.org/10.1016/j.ijresmar.2019.08.002 
  45. Saide, C., Lengelle, R., Honeine, P., Richard, C., and Achkar, R. (2015). Nonlinear adaptive filtering using kernel-based algorithms with dictionary adaptation [10.1002/acs.2548]. International Journal of Adaptive Control and Signal Processing, 29(11), 1391-1410. https://doi.org/10.1002/acs.2548 
  46. Schuster, M., and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093 
  47. Sheil, H., Rana, O., and Reilly, R. (2018). Predicting purchasing intent: Automatic feature learning using recurrent neural networks. arXiv preprint arXiv:1807.08207. 
  48. Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2019, 9-12 Dec. 2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. In 2019 IEEE International Conference on Big Data (Big Data). https://doi.org/10.1109/BigData47090.2019.9005997 
  49. Sorce, P., Perotti, V., and Widrick, S. (2005). Attitude and age differences in online buying. International Journal of Retail & Distribution Management, 33(2), 122-132. https://doi.org/10.1108/09590550510581458 
  50. Sun, C., Adamopoulos, P., Ghose, A., and Luo, X. (2022). Predicting stages in omnichannel path to purchase: A deep learning model. Information Systems Research, 33(2), 429-445.  https://doi.org/10.1287/isre.2021.1071
  51. Toth, A., Tan, L., Di Fabbrizio, G., and Datta, A. (2017). Predicting shopping behavior with mixture of RNNs. In Proceedings of SIGIR 2017 eCom. Tokyo, Japan. 
  52. Van den Poel, D., and Buckinx, W. (2005). Predicting online-purchasing behaviour. European Journal of Operational Research, 166(2), 557-575. https://doi.org/10.1016/j.ejor.2004.04.022 
  53. VanderMeer, D., Dutta, K., Datta, A., Ramamritham, K., and Navanthe, S. B. (2000). Enabling scalable online personalization on the web. In Proceedings of the 2nd ACM conference on Electronic commerce. New York, NY. 
  54. Wagner, G., Schramm-Klein, H., and Steinmann, S. (2020). Online retailing across e-channels and e-channel touchpoints: Empirical studies of consumer behavior in the multichannel e-commerce environment. Journal of Business Research, 107, 256-270. https://doi.org/10.1016/j.jbusres.2018.10.048 
  55. Wang, L., Ning, H., Tan, T., and Hu, W. (2004). Fusion of static and dynamic body biometrics for gait recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(2), 149-158. https://doi.org/10.1109/TCSVT.2003.821972 
  56. Wang, Y., and Xu, W. (2018). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87-95. https://doi.org/10.1016/j.dss.2017.11.001 
  57. Wei, J. T., Lin, S. Y., and Wu, H. H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206. https://doi.org/10.5897/AJBM.9000026 
  58. Wu, Z., Tan, B. H., Duan, R., Liu, Y., and Mong Goh, R. S. (2015). Neural modeling of buying behaviour for e-commerce from clicking patterns. In Proceedings of the 2015 International ACM Recommender Systems Challenge (pp. 1-4). https://doi.org/10.1145/2813448.2813521 
  59. Yang, M., and Wang, J. (2022). Adaptability of financial time series prediction based on BiLSTM. In Procedia Computer Science, 199, 18-25. https://doi.org/10.1016/j.procs.2022.01.003 
  60. Yeo, J., Hwang, S. W., S, K., Koh, E., and Lipka, N. (2020). Conversion Prediction from Clickstream: Modeling Market Prediction and Customer Predictability. IEEE Transactions on Knowledge and Data Engineering, 32(2), 246-259. https://doi.org/10.1109/TKDE.2018.2884467 
  61. Yuan, H., Zheng, J., Ye, Q., Qian, Y., and Zhang, Y. (2021). Improving fake news detection with domain-adversarial and graph-attention neural network. Decision Support Systems, 113633. https://doi.org/10.1016/j.dss.2021.113633 
  62. Zhang, K., Geng, Y., Zhao, J., Liu, J., and Li, W. (2020a). Sentiment Analysis of Social Media via Multimodal Feature Fusion. Symmetry, 12(12). https://doi.org/10.3390/sym12122010 
  63. Zhang, W., Yu, J., Hu, H., Hu, H., and Qin, Z. (2020b). Multimodal feature fusion by relational reasoning and attention for visual question answering. Information Fusion, 55, 116-126. https://doi.org/10.1016/j.inffus.2019.08.009 
  64. Zhang, Y., Bradlow, E. T., and Small, D. S. (2013). New measures of clumpiness for incidence data. Journal of Applied Statistics, 40(11), 2533-2548. https://doi.org/10.1080/02664763.2013.818627 
  65. Zhang, Y., Bradlow, E. T., and Small, D. S. (2015). Predicting customer value using clumpiness: From RFM to RFMC. Marketing Science, 34(2), 195-208. https://doi.org/10.1287/mksc.2014.0873 
  66. Zhu, G., Wu, Z., Wang, Y., Cao, S., and Cao, J. (2019). Online purchase decisions for tourism e-commerce. Electronic Commerce Research and Applications, 38, 100887. https://doi.org/10.1016/j.elerap.2019.100887