• 제목/요약/키워드: Keyword network

검색결과 589건 처리시간 0.023초

물류 분야 학술지의 공저자 네트워크 및 연구주제 분석 (A Study on Co-authorship Network in the Journals of a Branch of Logistics)

  • 임혜선;장태우
    • 산업공학
    • /
    • 제25권4호
    • /
    • pp.458-471
    • /
    • 2012
  • In this study, we investigate the cooperative relationships between researchers who have co-authorship in the logistics-related journals in Korea by using social network analysis (SNA). We analyzed the co-authorship data of 781 articles published from 2005 to 2011 in four journals of 'Logistics Study', 'Journal of Korean Society of SCM', 'Korea Logistics Review' and 'Journal of Shipping and Logistics.' We examined the trend of cooperative research in the field of logistics with basic data of the co-authorship network. Then, we analyzed structural properties of the network and the sub-networks of research groups having co-authorship. We could verify the authors who play important roles within the network by using SNA indicators. In addition, we constructed the keyword networks based on the keyword data of all articles by research groups in order to understand the research topics of each group, and thereby we could draw several implications on the cooperative researches in the field of logistics.

건강보험 연구동향에 대한 키워드 네트워크 분석 (A Keyword Network Analysis on Research Trends in the Area of Health Insurance)

  • 이수정;이선희
    • 보건행정학회지
    • /
    • 제31권3호
    • /
    • pp.335-343
    • /
    • 2021
  • Background: The purpose of this study was to extract the major areas of interest in health insurance research in Korea, and infer policy agendas related to health insurance by analyzing research keywords. Methods: For this study, 2,590 articles were selected from among 7,459 academic papers related to health insurance published between January 1987 and December 2018, which were looked up using the Research Information Sharing Service (RISS). Keyword extraction and keyword network analysis were performed using the KrKwic, KrTitle, and UCINET software. Results: First, the number of studies in the area of health insurance continued to increase in all government terms, and it was not until after the 2000s that the subjects of health insurance researches were diversified. Second, degree centrality showed that 'medical expenditure' and 'medical utilization' were consistently high-ranking keywords regardless of the government in power. Aging and long-term care insurance-related keywords were ranked higher in the Lee Myung-bak government, Park Geun-hye government, and Moon Jae-in government. Third, betweenness centrality showed the same high ranking in key topics such as medical expenditure and medical utilization, while the ranking of key keywords differed depending on the interests and characteristics of each government policy. Conclusion: We confirm that health insurance as a research topic has been the main theme in Korean health care research fields. Research keywords extracted from articles also corresponded to the main health policies promoted during each government period. Efforts to systematically investigate policy megatrends are needed to plan adaptive future policies.

빅데이터 기반 공동선 증진을 위한 미래교육 방향성 탐색 연구 (A Study on Exploring Direction for Future Education for the Common Good Based on Big Data)

  • 김병만;김정인;이영우;이강훈
    • 융합정보논문지
    • /
    • 제12권2호
    • /
    • pp.37-46
    • /
    • 2022
  • 본 연구는 빅데이터와 키워드 네트워크 분석을 통해 공동선 증진을 위한 미래교육 방향을 탐색함으로써 미래교육의 방향성 제안에 대한 기초자료를 제공하는 것을 목적으로 한다. Textom에서 제공하는 빅데이터를 기반으로 '미래교육 + 공통선'이라는 키워드로 데이터를 수집한 후 키워드 네트워크 분석을 수행했다. 연구결과 '공익', '사회', 'KAIST 미래경고', '대책', '연구', '미래교육', '정치' 등이 공동선을 위한 미래교육의 사회적 인식에서 공통 키워드인 것으로 나타났다. 이번 연구결과는 공동선 증진을 위한 미래교육에 대한 사회적 인식이 인간, 물리적 환경, 사회적 대응, 학문적 관심, 교육정책, 교육계획 및 관련 변수와 밀접한 관련이 있음을 시사한다. 이와 같은 결과를 바탕으로 공동선 증진을 위한 미래교육의 방향성 제안을 위한 기초자료 마련에 의미 있는 시사점을 제시하였다.

키워드 네트워크 분석을 활용한 글로벌가치사슬(GVCs) 연구동향 분석 (A Study on Global Value Chains(GVCs) Research Trends Based on Keyword Network Analysis )

  • 박현용;최영준;이가은
    • 무역학회지
    • /
    • 제45권5호
    • /
    • pp.239-260
    • /
    • 2020
  • This research was conducted on 176 GVCs-related research papers listed in the Index of Korean Academic Writers. The analysis methodology used the keyword network analysis methodology of big data analysis. For the comprehensive analysis of research trends, the research trends through word frequency (TF), important topic (TF-IDF), and topical modeling were analyzed in 176 papers. In addition, the research period of GVCs was divided into the early stages of the first study (2003-2014), the second phase of the study (2015-2017), and the third phase of the study (2018-2020). According to the comprehensive analysis, the GVCs research was conducted with the keyword 'value added' as the center, focusing on the keywords of export (trade), Korea, business, influence, and production. Major research topics were 'supporting corporate cooperation and capacity building' and 'comparative advantage with added value of overseas direct investment'. According to the analysis of major period-specific research trends, GVCs were studied in the early stages of the first phase of the study with global value chain trends and corporate production strategies. In the second research propulsion period, research was done in terms of trade value added. In the recent third phase of the study, small and medium-sized enterprises actively participated in the global value chain and actively researched ways to support the government. Through this study, the importance of the global value chain has been confirmed quantitatively and qualitatively, and it is recognized as an important factor to be considered in the strategy of enhancing industrial competitiveness and entering overseas markets. In particular, small and medium-sized companies' participation in the global value chain and support measures are being presented as important research topics in the future.

국내 통합의학 저널의 연구 동향에 대한 계량서지학적 분석 : Integrative Medicine Research를 중심으로 (A Bibliometric Analysis of Research Trends in Domestic Integrative Medicine Journals : Focused on Integrative Medicine Research)

  • 김대진;윤태형;이종록;최병희
    • 대한통합의학회지
    • /
    • 제12권2호
    • /
    • pp.197-210
    • /
    • 2024
  • Purpose : This study aimed to analyze research trends in the field of integrative medicine through a bibliometric analysis of articles published in Integrative Medicine Research (IMR) journal from 2017 to 2022. Methods : Articles published in IMR journal between 2017 and 2022 were searched using the Web of Science database on August 22, 2023. The analysis was performed using the Bibliometrix and Biblioshiny tools in R (version 4.3.1) and VOSviewer (version 1.6.19). Results : The key findings were as follows: average citations per article (9.41), total authors (1,142), single-authored articles (12), average articles per author (0.27), average co-authors per article (5.27), and rate of international co-authorships (15.69 %). The most-cited article was on the cryopreservation of cells or tissues and their clinical applications. The top keyword analysis by author keywords showed that "acupuncture" was the most frequently used keyword (33 times). Co-occurrence network analysis showed 85 high-frequency keywords that appeared five or more times, and the top five keywords by total link strength were "acupuncture," "herbal medicine," "prevalence," "alternative medicine," and "complementary." The study found that, contrary to the trend in complementary and alternative medicine research in Korea, the IMR journal actively conducts intervention studies to provide clinical evidence. Conclusion : In the IMR journal, "acupuncture" was the most frequent of author keywords. The analysis of keyword trend topics over time showed that the keyword "systematic review" continued to appear from 2020 to 2022, and the keyword "clinical practice guideline" appeared for the first time in 2021. In particular, the co-occurrence network analysis highlighted keywords related to intervention research, in contrast to domestic research trends. While this study analyzed only one journal, future studies expanding the category of integrative medicine and increasing the number of journals analyzed may provide further insights.

A Process-Centered Knowledge Model for Analysis of Technology Innovation Procedures

  • Chun, Seungsu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1442-1453
    • /
    • 2016
  • Now, there are prodigiously expanding worldwide economic networks in the information society, which require their social structural changes through technology innovations. This paper so tries to formally define a process-centered knowledge model to be used to analyze policy-making procedures on technology innovations. The eventual goal of the proposed knowledge model is to apply itself to analyze a topic network based upon composite keywords from a document written in a natural language format during the technology innovation procedures. Knowledge model is created to topic network that compositing driven keyword through text mining from natural language in document. And we show that the way of analyzing knowledge model and automatically generating feature keyword and relation properties into topic networks.

Exploratory Study of Developing a Synchronization-Based Approach for Multi-step Discovery of Knowledge Structures

  • Yu, So Young
    • Journal of Information Science Theory and Practice
    • /
    • 제2권2호
    • /
    • pp.16-32
    • /
    • 2014
  • As Topic Modeling has been applied in increasingly various domains, the difficulty in naming and characterizing topics also has been recognized more. This study, therefore, explores an approach of combining text mining with network analysis in a multi-step approach. The concept of synchronization was applied to re-assign the top author keywords in more than one topic category, in order to improve the visibility of the topic-author keyword network, and to increase the topical cohesion in each topic. The suggested approach was applied using 16,548 articles with 2,881 unique author keywords in construction and building engineering indexed by KSCI. As a result, it was revealed that the combined approach could improve both the visibility of the topic-author keyword map and topical cohesion in most of the detected topic categories. There should be more cases of applying the approach in various domains for generalization and advancement of the approach. Also, more sophisticated evaluation methods should also be necessary to develop the suggested approach.

4차 산업혁명 차세대 생산혁신 기술 탐색: 키워드 네트워크를 중심으로 (Exploring the Key Technologies on Next Production Innovation)

  • 이수철;고미현
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.199-207
    • /
    • 2018
  • 본 연구는 4차 산업혁명으로 불리는 생산 패러다임 변화에 선도적으로 대응하기 위해 차세대 생산혁신 기술을 증거기반 키워드 네트워크를 통해 분석하는 것을 목적으로 한다. 분석을 위해 차세대 생산혁신 기술과 관련한 총 441건의 논문데이터를 추출하였고, 이 논문들의 저자 키워드 동시 등장 관계를 기반으로 차세대 생산혁신 기술 네트워크를 구축하였다. 구축된 기술 네트워크를 바탕으로 중심성 및 키워드 그룹 분석을 통해 주요 기술을 탐색하였다. 그 결과 'digital twin', 'modeling and simulation' 등 가상세계와 물리세계를 실시간으로 완벽하게 연결하여 인사이트를 발견하고, 이를 설계 및 공정에 반영하는 기술들이 주요 기술로 분석되었다. 이러한 결과는 관련 산업 내에서 4차 산업혁명으로 인한 변화를 대비하는 기업들에게 의미 있는 정보를 줄 수 있을 것으로 기대된다.

키워드 네트워크 분석을 이용한 빅데이터 특허 분석 (Big Data Patent Analysis Using Social Network Analysis)

  • 최주철
    • 한국융합학회논문지
    • /
    • 제9권2호
    • /
    • pp.251-257
    • /
    • 2018
  • 빅데이터의 활용은 비즈니스 가치를 높이는데 필수요소가 됨에 따라 빅데이터 시장의 규모가 점점 더 커지고 있다. 이에 따라 빅데이터 시장을 선점하기 위해서는 경쟁력 있는 특허를 선점하는 것이 중요하다. 본 연구에서는 빅데이터 특허의 동향을 분석하기 위하여 영문 키워드 네트워크 기반 특허분석을 수행하였다. 분석 절차는 빅데이터 수집 및 전처리, 네트워크 구성, 네트워크 분석으로 구성되어 있다. 연구 결과는 다음과 같다. 빅데이터 특허 대다수는 예측 등을 위한 데이터 처리를 위한 특허이며, analysis, process, information, data, prediction, server, service, construction 키워드가 연결정도 중심성 및 매개 중심성이 높았다. 본 연구의 분석결과는 향후 빅데이터 특허 출원 시 참고할 수 있는 유용한 정보로 활용될 수 있다.

텍스트마이닝을 활용한 HPV 백신 접종 관련 연구 동향 분석 (A Text Mining Analysis of HPV Vaccination Research Trends)

  • 손예동;강희선
    • Child Health Nursing Research
    • /
    • 제25권4호
    • /
    • pp.458-467
    • /
    • 2019
  • Purpose: The purpose of this study was to identify human papillomavirus (HPV) vaccination research trends by visualizing a keyword network. Methods: Articles about HPV vaccination were retrieved from the PubMed and Web of Science databases. A total of 1,448 articles published in 2006~2016 were selected. Keywords from the abstracts of these articles were extracted using the text mining program WordStat and standardized for analysis. Sixty-four keywords out of 287 were finally chosen after pruning. Social network analysis using NetMiner was applied to analyze the whole keyword network and the betweenness centrality of the network. Results: According to the results of the social network analysis, the central keywords with high betweenness centrality included "health education", "health personnel", "parents", "uptake", "knowledge", and "health promotion". Conclusion: To increase the uptake of HPV vaccination, health personnel should provide health education and vaccine promotion for parents and adolescents. Using social media, governmental organizations can offer accurate information that is easily accessible. School-based education will also be helpful.