• Title/Summary/Keyword: Keyword Research

Search Result 1,004, Processing Time 0.027 seconds

Developing the Purchase Conversion Model of the Keyword Advertising Based on the Individual Search (개인검색기반 키워드광고 구매전환모형 개발)

  • Lee, Dong Il;Kim, Hyun Gyo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.123-138
    • /
    • 2013
  • Keyword advertising has been used as a promotion tool rather than the advertising itself to online retailers. This is because the online retailer expects the direct sales increase when they deploy the keyword sponsorship. In practice, many online sellers rely on keyword advertising to promote their sales in short term with limited budget. Most of the previous researches use direct revenue factors as dependent variables such as CTR (click through rate) and CVI (conversion per impression) in their researches on the keyword advertising[14, 16, 22, 25, 31, 32]. Previous studies were, however, conducted in the context of aggregate-level due to the limitations on the data availability. These researches cannot evaluate the performance of keyword advertising in the individual level. To overcome these limitations, our research focuses on conversion of keyword advertising in individual-level. Also, we consider manageable factors as independent variables in terms of online retailers (the costs of keyword by implementation methods and meanings of keyword). In our study we developed the keyword advertising conversion model in the individual-level. With our model, we can make some theoretical findings and managerial implications. Practically, in the case of a fixed cost plan, an increase of the number of clicks is revealed as an effective way. However, higher average CPC is not significantly effective in increasing probability of purchase conversion. When this type (fixed cost plan) of implementation could not generate a lot of clicks, it cannot significantly increase the probability of purchase choice. Theoretically, we consider the promotional attributes which influence consumer purchase behavior and conduct individuals-level research based on the actual data. Limitations and future direction of the study are discussed.

Keyword Network Analysis on Global Research Trend in Design (1999~2018) (글로벌 디자인 연구동향에 대한 키워드 네트워크 분석 연구 (1999~2018))

  • Choi, Chool-Heon;Jang, Phill-Sik
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • The purpose of this study is to identify the characteristics of researches that have been conducted for the last 20 years through analyzing global research trends and evolutions of design articles from 1999 to 2018 with keyword network analysis. For this purpose, we selected 3,569 articles in 22 journals related to design research retrieved from the Scopus database and constructed keyword network model through the author keyword and index keyword. The frequency of the author and index keyword, the centrality of betweenness and degree were analyzed with the keyword network. The results show that design has been applied to various fields for recent 20 years, and the research trends of design could be quantitatively characterized by keyword network analysis. The result of this study could be used to suggest future research topics in the field of design based on quantitative and empirical data.

A Study on the Research Trend in the Dyslexia and Learning Disability Trough a Keyword Network Analysis (키워드 네트워크 분석을 통한 난독증과 학습장애 관련 연구 동향 분석)

  • Lee, Woo-Jin;Kim, Tae-Gang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2019
  • The present study was performed to investigate the general research trends of dyslexia and learning disability to explore the centrality of related variables though analysis of keyword networks. Data were collected from ten years articles research information sharing service(RISS) which is provided by korea education and research information service(KERIS). The research subjects selected for the analysis were keyword cleansing work, extraction major keyword using KrKwic program and using NodeXL program to Visualize the center of connection between keyword. The results of this were as follows. First, totally 72 of keyword were extracted from keyword cleansing process and among those keyword. major keywords included learning disability, dyslexia, RTI. Second, analysis of the betweenness centrality of dyslexia and learing disabilities shows that learning disabilities are a key word that has been addressed in the study of dyslexia and learning disabilities in korea. The results of these studies suggest a method of analyzing trends in qualitative and qualitative analysis in relation to dyslexia and learning disorder.

A Study on the Research Trends to Flipped Learning through Keyword Network Analysis (플립러닝 연구 동향에 대한 키워드 네트워크 분석 연구)

  • HEO, Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.872-880
    • /
    • 2016
  • The purpose of this study is to find the research trends relating to flipped learning through keyword network analysis. For investigating this topic, final 100 papers (removed due to overlap in all 205 papers) were selected as subjects from the result of research databases such as RISS, DBPIA, and KISS. After keyword extraction, coding, and data cleaning, we made a 2-mode network with final 202 keywords. In order to find out the research trends, frequency analysis, social network structural property analysis based on co-keyword network modeling, and social network centrality analysis were used. Followings were the results of the research: (a) Achievement, writing, blended learning, teaching and learning model, learner centered education, cooperative leaning, and learning motivation, and self-regulated learning were found to be the most common keywords except flipped learning. (b) Density was .088, and geodesic distance was 3.150 based on keyword network type 2. (c) Teaching and learning model, blended learning, and satisfaction were centrally located and closed related to other keywords. Satisfaction, teaching and learning model blended learning, motivation, writing, communication, and achievement were playing an intermediary role among other keywords.

Analyzing Trends in Early Childhood Evaluation Research Using Keyword Network Analysis (키워드 네트워크 분석을 활용한 영유아교육기관 평가 연구동향 분석)

  • Sung Hee, Hong;Kyeong Hwa, Lee
    • Korean Journal of Childcare and Education
    • /
    • v.20 no.1
    • /
    • pp.91-111
    • /
    • 2024
  • Objective: The purpose of this study is to explore trends in institutional evaluation research in early childhood education through keyword network analysis. This aims to understand trends in academic discourse on institutional evaluation and gain implications for follow-up research and related policy directions. Methods: A total of 6,629 keywords were extracted from 572 dissertations and journal articles published from January 2006 to October 2023 for the purpose of analyzing and visualizing the frequency and centrality of keywords, as well as the structural properties of keyword networks. The analysis and visualization were conducted using the TEXTOM, UCINET6, and NetDraw programs. Results: First, the number of institutional evaluation studies increased steadily from 2006 to 2010 and then decreased, with a higher frequency of studies on daycare centers compared to kindergartens. Second, the most frequently occurring keyword in the analysis was 'daycare center,' and the highest connection strength was found in the term 'daycare-center-evaluation.' Third, network analysis revealed that key terms for institutional evaluation research included 'evaluation certification,' 'recognition,' 'evaluation indicators,' 'teacher,' 'daycare center,' and 'kindergarten.' In the ego network analysis for each institution, 'parent' emerged as a highly ranked keyword. Conclusion/Implications: This study confirmed the perspectives of previous studies by revealing the structure of core concepts in early childhood education institution evaluation research, and provided implications for follow-up and direction of institution evaluation

A Social Network Analysis of Research Key Words Related Smoke Cessation in South Korea (연결망 분석을 활용한 우리나라 금연연구 동향분석)

  • An, Eun-Seong
    • Health Policy and Management
    • /
    • v.29 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • Background: The purpose of this study is supposed to figure out the keyword network from 2009 to 2018 with social network analysis and provide the research data that can help the Korea government's policy making on smoking cessation. Methods: First, frequency analysis on the keyword was performed. After, in this study, I applied three classic centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) with R 3.5.1. Moreover, I visualized the results as the word cloud and keyword network. Results: As a result of network analysis, 'smoking' and 'smoking cessation' were key words with high frequency, high degree centrality, and betweenness centrality. As a result of looking at trends in keyword, many study had been done on the keyword 'secondhand smoke' and 'adolescent' from 2009 to 2013, and 'cigarette graphic warning' and 'electronic cigarette' from 2014 to 2018. Conclusion: This study contributes to understand trends on smoking cessation study and seek further study with the keyword network analysis.

A Study on Technology Forecasting based on Co-occurrence Network of Keyword in Multidisciplinary Journals (다학제 분야 학술지의 주제어 동시발생 네트워크를 활용한 기술예측 연구)

  • Kim, Hyunuk;Ahn, Sang-Jin;Jung, Woo-Sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.49-63
    • /
    • 2015
  • Keyword indexed in multidisciplinary journals show trends about science and technology innovation. Nature and Science were selected as multidisciplinary journals for our analysis. In order to reduce the effect of plurality of keyword, stemming algorithm were implemented. After this process, we fitted growth curve of keyword (stem) following bass model, which is a well-known model in diffusion process. Bass model is useful for expressing growth pattern by assuming innovative and imitative activities in innovation spreading. In addition, we construct keyword co-occurrence network and calculate network measures such as centrality indices and local clustering coefficient. Based on network metrics and yearly frequency of keyword, time series analysis was conducted for obtaining statistical causality between these measures. For some cases, local clustering coefficient seems to Granger-cause yearly frequency of keyword. We expect that local clustering coefficient could be a supportive indicator of emerging science and technology.

Exploration of Hydrogen Research Trends through Social Network Analysis (연구 논문 네트워크 분석을 이용한 수소 연구 동향)

  • KIM, HYEA-KYEONG;CHOI, ILYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • This study analyzed keyword networks and Author's Affiliation networks of hydrogen-related papers published in Korea Citation Index (KCI) journals from 2016 to 2020. The study investigated co-occurrence patterns of institutions over time to examine collaboration trends of hydrogen scholars. The study also conducted frequency analysis of keyword networks to identify key topics and visualized keyword networks to explore topic trends. The result showed Collaborative research between institutions has not yet been extensively expanded. However, collaboration trends were much more pronounced with local universities. Keyword network analysis exhibited continuing diversification of topics in hydrogen research of Korea. In addition centrality analysis found hydrogen research mostly deals with multi-disciplinary and complex aspects like hydrogen production, transportation, and public policy.

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

A Knowledge Map Based on a Keyword-Relation Network by Using a Research Paper Database in the Computer Engineering Field (컴퓨터공학 분야 학술 논문 데이터베이스를 이용한 키워드 연관 네트워크 기반 지식지도)

  • Jung, Bo-Seok;Kwon, Yung-Keun;Kwak, Seung-Jin
    • The KIPS Transactions:PartD
    • /
    • v.18D no.6
    • /
    • pp.501-508
    • /
    • 2011
  • A knowledge map, which has been recently applied in various fields, is discovering characteristics hidden in a large amount of information and showing a tangible output to understand the meaning of the discovery. In this paper, we suggested a knowledge map for research trend analysis based on keyword-relation networks which are constructed by using a database of the domestic journal articles in the computer engineering field from 2000 through 2010. From that knowledge map, we could infer influential changes of a research topic related a specific keyword through examining the change of sizes of the connected components to which the keyword belongs in the keyword-relation networks. In addition, we observed that the size of the largest connected component in the keyword-relation networks is relatively small and groups of high-similarity keyword pairs are clustered in them by comparison with the random networks. This implies that the research field corresponding to the largest connected component is not so huge and many small-scale topics included in it are highly clustered and loosely-connected to each other. our proposed knowledge map can be considered as a approach for the research trend analysis while it is impossible to obtain those results by conventional approaches such as analyzing the frequency of an individual keyword.