• Title/Summary/Keyword: Key point extraction

Search Result 59, Processing Time 0.02 seconds

Adaptive Key-point Extraction Algorithm for Segmentation-based Lane Detection Network (세그멘테이션 기반 차선 인식 네트워크를 위한 적응형 키포인트 추출 알고리즘)

  • Sang-Hyeon Lee;Duksu Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Deep-learning-based image segmentation is one of the most widely employed lane detection approaches, and it requires a post-process for extracting the key points on the lanes. A general approach for key-point extraction is using a fixed threshold defined by a user. However, finding the best threshold is a manual process requiring much effort, and the best one can differ depending on the target data set (or an image). We propose a novel key-point extraction algorithm that automatically adapts to the target image without any manual threshold setting. In our adaptive key-point extraction algorithm, we propose a line-level normalization method to distinguish the lane region from the background clearly. Then, we extract a representative key point for each lane at a line (row of an image) using a kernel density estimation. To check the benefits of our approach, we applied our method to two lane-detection data sets, including TuSimple and CULane. As a result, our method achieved up to 1.80%p and 17.27% better results than using a fixed threshold in the perspectives of accuracy and distance error between the ground truth key-point and the predicted point.

Enhancing Accuracy Performance of Fuzzy Vault Non-Random Chaff Point Generator for Mobile Payment Authentication

  • Arrahmah, Annisa Istiqomah;Gondokaryono, Yudi Satria;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2016
  • Biometric authentication for account-based mobile payment continues to gain attention because of improvements on sensors that can collect biometric information. We propose an enhanced method for mobile payment security based on biometric authentication. In this mobile payment system, the communication between the user and the relying party is based on public key infrastructure. This method secures both the key and the biometric template in the user side using fuzzy vault biometric cryptosystems, which is based on non-random chaff point generator. In this paper, we consider an important process for the common fuzzy vault system, that is, the feature extraction method. We evaluate various feature extraction methods to enhance the accurate performance of the system.

A Novel Technique for Detection of Repacked Android Application Using Constant Key Point Selection Based Hashing and Limited Binary Pattern Texture Feature Extraction

  • MA Rahim Khan;Manoj Kumar Jain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.141-149
    • /
    • 2023
  • Repacked mobile apps constitute about 78% of all malware of Android, and it greatly affects the technical ecosystem of Android. Although many methods exist for repacked app detection, most of them suffer from performance issues. In this manuscript, a novel method using the Constant Key Point Selection and Limited Binary Pattern (CKPS: LBP) Feature extraction-based Hashing is proposed for the identification of repacked android applications through the visual similarity, which is a notable feature of repacked applications. The results from the experiment prove that the proposed method can effectively detect the apps that are similar visually even that are even under the double fold content manipulations. From the experimental analysis, it proved that the proposed CKPS: LBP method has a better efficiency of detecting 1354 similar applications from a repository of 95124 applications and also the computational time was 0.91 seconds within which a user could get the decision of whether the app repacked. The overall efficiency of the proposed algorithm is 41% greater than the average of other methods, and the time complexity is found to have been reduced by 31%. The collision probability of the Hashes was 41% better than the average value of the other state of the art methods.

A reversible data hiding scheme in JPEG bitstreams using DCT coefficients truncation

  • Zhang, Mingming;Zhou, Quan;Hu, Yanlang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.404-421
    • /
    • 2020
  • A reversible data hiding scheme in JPEG compressed bitstreams is proposed, which could avoid decoding failure and file expansion by means of removing of bitstreams corresponding to high frequency coefficients and embedding of secret data in file header as comment part. We decode original JPEG images to quantified 8×8 DCT blocks, and search for a high frequency as an optimal termination point, beyond which the coefficients are set to zero. These blocks are separated into two parts so that termination point in the latter part is slightly smaller to make the whole blocks available in substitution. Then spare space is reserved to insert secret data after comment marker so that data extraction is independent of recovery in receiver. Marked images can be displayed normally such that it is difficult to distinguish deviation by human eyes. Termination point is adaptive for variation in secret size. A secret size below 500 bits produces a negligible distortion and a PSNR of approximately 50 dB, while PSNR is also mostly larger than 30 dB for a secret size up to 25000 bits. The experimental results show that the proposed technique exhibits significant advantages in computational complexity and preservation of file size for small hiding capacity, compared to previous methods.

Conjugate Point Extraction for High-Resolution Stereo Satellite Images Orientation

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.55-62
    • /
    • 2019
  • The stereo geometry establishment based on the precise sensor modeling is prerequisite for accurate stereo data processing. Ground control points are generally required for the accurate sensor modeling though it is not possible over the area where the accessibility is limited or reference data is not available. For the areas, the relative orientation should be carried out to improve the geometric consistency between the stereo data though it does not improve the absolute positional accuracy. The relative orientation requires conjugate points that are well distributed over the entire image region. Therefore the automatic conjugate point extraction is required because the manual operation is labor-intensive. In this study, we applied the method consisting of the key point extraction, the search space minimization based on the epipolar line, and the rigorous outlier detection based on the RPCs (Rational Polynomial Coefficients) bias compensation modeling. We tested different parameters of window sizes for Kompsat-2 across track stereo data and analyzed the RPCs precision after the bias compensation for the cases whether the epipolar line information is used or not. The experimental results showed that matching outliers were inevitable for the different matching parameterization but they were successfully detected and removed with the rigorous method for sub-pixel level of stereo RPCs precision.

An Analysis on Key Factors of Mobile Fitness Application by Using Text Mining Techniques : User Experience Perspective (텍스트마이닝 기법을 이용한 모바일 피트니스 애플리케이션 주요 요인 분석 : 사용자 경험 관점)

  • Lee, So-Hyun;Kim, Jinsol;Yoon, Sang-Hyeak;Kim, Hee-Woong
    • Journal of Information Technology Services
    • /
    • v.19 no.3
    • /
    • pp.117-137
    • /
    • 2020
  • The development of information technology leads to changes in various industries. In particular, the health care industry is more influenced so that it is focused on. With the widening of the health care market, the market of smart device based personal health care also draws attention. Since a variety of fitness applications for smartphone based exercise were introduced, more interest has been in the health care industry. But although an amount of use of mobile fitness applications increase, it fails to lead to a sustained use. It is necessary to find and understand what matters for mobile fitness application users. Therefore, this study analyze the reviews of mobile fitness application users, to draw key factors, and thereby to propose detailed strategies for promoting mobile fitness applications. We utilize text mining techniques - LDA topic modeling, term frequency analysis, and keyword extraction - to draw and analyze the issues related to mobile fitness applications. In particular, the key factors drawn by text mining techniques are explained through the concept of user experience. This study is academically meaningful in the point that the key factors of mobile fitness applications are drawn by the user experience based text mining techniques, and practically this study proposes detailed strategies for promoting mobile fitness applications in the health care area.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

Research of fast point cloud registration method in construction error analysis of hull blocks

  • Wang, Ji;Huo, Shilin;Liu, Yujun;Li, Rui;Liu, Zhongchi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.605-616
    • /
    • 2020
  • The construction quality control of hull blocks is of great significance for shipbuilding. The total station device is predominantly employed in traditional applications, but suffers from long measurement time, high labor intensity and scarcity of data points. In this paper, the Terrestrial Laser Scanning (TLS) device is utilized to obtain an efficient and accurate comprehensive construction information of hull blocks. To address the registration problem which is the most important issue in comparing the measurement point cloud and the design model, an automatic registration approach is presented. Furthermore, to compare the data acquired by TLS device and sparse point sets obtained by total station device, a method for key point extraction is introduced. Experimental results indicate that the proposed approach is fast and accurate, and that applying TLS to control the construction quality of hull blocks is reliable and feasible.

Fast key-frame extraction for 3D reconstruction from a handheld video

  • Choi, Jongho;Kwon, Soonchul;Son, Kwangchul;Yoo, Jisang
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • In order to reconstruct a 3D model in video sequences, to select key frames that are easy to estimate a geometric model is essential. This paper proposes a method to easily extract informative frames from a handheld video. The method combines selection criteria based on appropriate-baseline determination between frames, frame jumping for fast searching in the video, geometric robust information criterion (GRIC) scores for the frame-to-frame homography and fundamental matrix, and blurry-frame removal. Through experiments with videos taken in indoor space, the proposed method shows creating a more robust 3D point cloud than existing methods, even in the presence of motion blur and degenerate motions.

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.