
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

141

Manuscript received September 5, 2023
Manuscript revised September 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.9.18

A Novel Technique for Detection of Repacked Android Application
Using Constant Key Point Selection Based Hashing and Limited Binary

Pattern Texture Feature Extraction

MA Rahim Khan 1† and Manoj Kumar Jain 2††,
khan_rahim@rediffmail.com manojjain@lingayasuniversity.edu.in

Department of Computer Science & Engineering,
Lingaya's Vidyapeeth, Faridabad, Haryana 121002, India

Abstract
Repacked mobile apps constitute about 78% of all malware of
Android, and it greatly affects the technical ecosystem of Android.
Although many methods exist for repacked app detection, most of
them suffer from performance issues. In this manuscript, a novel
method using the Constant Key Point Selection and Limited
Binary Pattern (CKPS: LBP) Feature extraction-based Hashing is
proposed for the identification of repacked android applications
through the visual similarity, which is a notable feature of
repacked applications. The results from the experiment prove that
the proposed method can effectively detect the apps that are
similar visually even that are even under the double fold content
manipulations. From the experimental analysis, it proved that the
proposed CKPS: LBP method has a better efficiency of detecting
1354 similar applications from a repository of 95124 applications
and also the computational time was 0.91 seconds within which a
user could get the decision of whether the app repacked. The
overall efficiency of the proposed algorithm is 41% greater than
the average of other methods, and the time complexity is found to
have been reduced by 31%. The collision probability of the Hashes
was 41% better than the average value of the other state of the art
methods.
Keywords:
App Repacking, Android Malware, Obfuscation, KeyPoint
Selection, Limited Binary Pattern, Collision probability.

1. Introduction

Smartphones and other portable devices have become

essential in ones’ life. Due to the affordability and the huge
functionalities, the Android devices have occupied 78.2%
of the total share in 2019 [1] . Mobile-based applications or
in short “Mobile Apps” holds a significant part in the
Android functionality. At present, there exist around 1
million applications [2] in the Google Play store. Unlike the
'Apple's applications that can be distributed only through
their stores, Android apps can be distributes through many
third-party websites and stores that do not have a
comprehensive review and pre-checks. This makes the
hackers and the malicious app developers to easily breed the
true applications by repacking with additional coded and
functionality. As per the recent cyber threat report, Android
counts for almost 97% of all threats happening in mobile

devices, which can cause a severe damage to the
technological ecosystem of Android developers and users.

Android malwares typically consist of Trojans, Adware,
and Fake apps. Almost 85% of the malwares are made by
the repacking technique, a process where the official apps
are disassembled, and malicious codes or additional
functionality is injected so as to gain money from ads and
also to steal personal data [3]. By making use of the
repackaging, the hackers perform many unethical activities
such as data theft, unwanted ads posting and cracking of
payment functionality and can replace the original
'developer's I.D. Also, the malware developers can make a
replica of bank apps which can cause serious financial loss
to the customers. In summary, in order to secure the
Android being exploited, the repackaging needs more
attention from the researchers for an efficient technique to
address the same.

The image processing techniques are adopted mainly in
many domains and data protection has become a serious
concern [4]. Image Hashing is a technique which can extract
the content-oriented signature from the image. Various
image hashing schemes have been developed for the
restriction of images that carry important messages being
tampered. It has a wide range of applications, including
digital forensic, authentications, and repacking detection of
android apps. Generally, the hashing technique should
ensure the following parameters [5].

One-way hashing, which means that the images
converted to hash quickly, whereas facing issues when the
Hash values are being converted to the original image
accurately.

Compact: The size of the hash values should always be
very less when compared to the original image.

Perceptually Robust: it means that the difference that
exists between a couple of image hash values generated
through different perceptions should be kept small.

https://doi.org/10.22937/IJCSNS.2020.20.10.01
mailto:khan_rahim@rediffmail.com

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

142

The resistance of the collision in hashes should be
different for different images, and the unique images should
be identified through the hash distance.

The hash values should be unpredictable without the
knowledge of the secret keys.

A range of techniques are available for the detection of
mobile apps that are repacked [6], but these methods often
suffer from various hindrances and are more complex and
time-consuming. Further, the Hash formed of an image
must be resistant over the content tampering. The
techniques also should be susceptible to any update done on
the content. In keeping in mind of these issues, this paper
proposes a novel technique named [KPS: LPB], where the
core intention came from the very fact that most of the
repacked android apps aim for modification in a logic of the
original apps, but for the users to get a false intention, the
appearance often needs to be similar to that of original apps.
Most of the repacked android apps must have a replica of
the look as that of the genuine app. Hence, a comparison-
based technique for visual similarity can efficiently and
quickly determine the repackaged apps. The proposed
method extracts the Key points that are more stable and the
texture-based features from the given image for generating
the 'app's image. The hash distance and the update distance
methods are used for the similarity check between repacked
and original apps.

The remaining of the paper is structured as follows,
section 2 provides the essential pieces of literature on the
domain, section 3 gives the problem analysis, and section 4
explains in detail of the proposed method. Section 5
describes the experimental point of view in the similarity
checking phase, and section 6 discusses the results obtained.
The last section provides the conclusion and future scopes.

2. Related Study

In the literature, many works have been proposed for the
detection of repacked mobile applications based on the
app's visual similarity. The context of website similarity is
different from that of mobile applications, and the
conventional methods do not yield efficient output [7]. As
far as the Security in smartphones is concerned, there are
several pieces of research that focus on the detection of
repacked apps. Most of them are based on the Dalvik
bytecode disassembling. DriodMOSS [8] was introduced
for the purpose, and it adopts a fuzzy-based logic for
Hashing for disassembling the code for repacked apps.
However, this approach is dependent on the pieces of
instructions on a given sequence and hence it was easy for
the malware writers to bypass the detection. DNADriod [9]
was proposed with the concept of program dependency-
based graphs and used the concept of sub-graphs

isomorphism technique for the detection of apps similarity.
However, this method suffered from scalability issues as the
number of graphs to be generated for a large scale of apps
in the repository was tedious. AnDrawin[10] used a
direction oriented method for the categorization of
statements in the disassembled source code into semantics
and constructed vectors. It addressed the issue of the local
sensitive hash algorithm and speeds up the detection.
ViewDroid [11] used the graph mining method for detecting
repacked apps. The graphs are called feature views and are
based on the relationship between the [UI] dependant
function callings. This method did not address the local
leakage issue in privacy. In [12], a program decouple based
graph generation was proposed for the detection of
“piggybacked” applications.

Juxtapp [13] made use of the ML methods for clustering
the similar kind of apps on the disassembled source codes.
Here, the techniques are largely dependent on the feature
selection techniques which cannot be applied for the Hash-
based detection. A wavelet-based method for feature
selection is introduced for the selection of feature points. In
[14], a rotational invariant matrix for the feature is used for
the generation of image hash. In [15], the three-tier tensor
is constructed from the source image for generating the
'images' Hash. In [16], an original image hashing method
is introduced by the incorporation of global level features
and local level features. The former and the latter were
based on the Xernike moments of the luminant components,
which helped in deriving the key points very easily. In [17]
again, the concept of global and local features were used for
the generation of Hash. The global features are obtained
through the partition of the ring and are projected into a non-
negative confusion matrix for the extraction of salient
features in an image.

There were only a few methods available in the
literature that can resist the combined manipulations. In [18],
an image hashing method is proposed, which are Gabor
filter-based and lattice oriented vectors quantization. The
proposed method scales up to robustness in a couple of
geometrical rotation and cropping of the source image. In
[19], a unique hashing method using the non-negative
matrices that will restrict rotational operations. In [20], the
combined ring segmentation is used for the image hash
generation. This method was found to be robust for the
rotational and content manipulations. This technique can
only validate the combinational repacking and not robust to
other repacking techniques. Although there exist a few
pieces of literature on the detection of repacked apps, there
still exists issues and challenges that need attention.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

143

3. Problem Analysis

The repacked mobile applications constitute the major
part of the Android malwares, and these are basically
detected using a couple of mechanisms [21]. As the
repackaged apps are from the original apps with some
modifications, the major of the functions and look would be
like that of the genuine app. Hence, one of the detection
approaches is based on the “sequence of instructions” in the
disassembled source codes. The detection systems under
these categories are DriodMOSS and DroidAnlaysis that
makes use of fuzzy logic for the hashing. These struggle
from hindrance, such as the inability to handle code
obfuscation. The next approach is based on the “Semantics”
of the code that are disassembled. The detection systems
that come under this are DNADroid, where the semantic
graphs are generated based on the code that are
disassembled. These suffer from scalability issues.

As it is understood, both the methods need to first
disassemble the concerned app prior analysis, and this can
result in large time complexity when a greater number of
applications are considered. The existing tools for the
disassembling are being easily bypassed by the malware
writers. In summary, the existing approaches primarily
focus on the codes that are disassembled and are not
scalable. Further, they can easily be bypassed by the
obfuscation of code. Although image hashing methods are
introduced to overcome this, many of them cannot handle
combined manipulation of the app.

4. Proposed Methodology

The proposed methodology is shown in Figure 1 The
proposed methodology consists of four important phases
namely the Pre-proceedings phase, Similarity Checker and
the Repacked app detector. The following section explains
the phases in detail.

Fig. 1. Proposed Methodology

4.1 Pre-Processing Phase

4.1.1 APK to Image Conversion

The first phase of the proposed methodology is the pre-
processing, wherein the Android A.P.K. files are converted
into images. Any digital file on the memory device is store
as a stream of bit of “0” and “1”. The reverse engineering
option available in the selendroid tool 20. All the readings
are carried out on every apk file as binary stream and group
each eight bits and store them to a new file with the image
file extension. A group of eight bits will produce values
between 0 − 255, which is equal to the grayscale 'image's
pixel value range. Using the aforementioned method, an
apk is converted to a grayscale image which is the first
requirement to create an image hash. Due to varying apk
size, the image dimensions will also be different; in our
experiment, we have fixed the width of the image to 1024,
and length varies accordingly. The apk-to-image
component takes target and query app as input and convert
all to a greyscale image file and store them to be used by
further components. The aforementioned image conversion
technique is adopted where all the binary content in the
source code that is in the numerical form represented in a
discrete fashion that considers all the byte value into an 8
bit ranging from 0-255 and then represented as a 2-D
greyscale image.

4.1.2 Filtering and Normalization

Prior extraction of the key feature points of the app
image, the pre-processing is done on the original file.
Initially, in order to ensure that all the images are with
similar Hash lengths. The concerned image is first put under
normalization to get a constant size by making use of the
linear interpretation. Then a specific filter, usually a low
pass, is applied for the process of normalizing the image.
The essentiality of filtering lies in eliminates the unwanted
Information and to extract only the essential features. The
filtering ensures the robustness of the hashing.

4.1.3 Feature Extraction

The feature extraction is carried out by the Limited
Binary pattern (LBP) operator who is preferably a
descriptor of the text and assigns binary labels to all the
pixels of an 'app's image. During the computation of the
label for every single pixel. The present pixel will be
assigned as the center. The corresponding grey value of that
center is then compared with the grey value in the 3*3
nearest pixel in a clock direction. If the nearest value is less
than the center, the bit value will be 0. Else, the concerned
bit value is set to 1. Once the gray values of the center and
the nearest pixels are compared, the binary value of the
center is then obtained and are converted to a decimal value.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

144

Hence, there exists a total of 256 chances for the adjacent
(includes 3*3 pixels), and the LBP vector range can be from
0-255. The histogram obtained will finally describe the
texture.

The pseudo-code for the LBP extraction is given
Algorithm 1. Every local sector is represented as a circle
surrounding the key points where the key point is made the
center with radius represented as r with a static value. In the
given local sector. Later, the LBP (8 Bit vector) belonging
to every pixel is then converted as a decimal (0-255). If the
given pixel in the local sector is outside the boundary in an
image, the concerned LBP value is then set to 0. The
interval 0-255 is then subdivided into subintervals like [0-
7], [8-15] … [247-255]. Hence for a local sector, the total
count of the LBP in a given interval is represented as
{𝑁𝑁1,𝑁𝑁2,𝑁𝑁3, … 𝑁𝑁𝑚𝑚} and the feature representing the texture
in the local sector Ri is represented as Texi =
{ 𝑇𝑇1,𝑇𝑇2, …𝑇𝑇𝑛𝑛 } . At last, the sequence in term of the binary
representation of the local sector R is given as

 𝑇𝑇𝑖𝑖𝑖𝑖 = � 1 𝑁𝑁𝑖𝑖 > 𝑚𝑚
32

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (1)

Where the range can take up the value between 1 and 32,
and m is the total pixels in the local sector. Hence, the
'textures' feature for N number of key points represented as
T = {Tex1, Tex2, Tex3 , . . . TexN }

Algorithm 1.: LBP Feature extraction

Input: Geometric Data on Apk image

Output: Textures features of the Key Points

STEP1: START

STEP2: FOR i=1 to k DO

STEP3: IDENTIFY THE LOCAL REGION RN FOR
THE KEYPOINT K

STEP4: CALCULATE LBP END FOR

STEP5: FOR q=1 to m

DO: CONVERT m Vector to Decimal

STEP6: SEGMENT 0 to 255 in Equal Intervals

[0-7] , [8-15] , … [247-255]

STEP7: CALCULATE THE NUMBER OF VERCORS
AS {N1, N2, N3,… Nm}

STEP8: FOR j = 1 to 32

STEP9: IF Ni > m/32 then Tij = 1 ELSE 0

STEP10: END IF

STEP11: Texi = { T1,T2,…Tn } END FOR

STEP12: RETURN T = { Tex1 , Tex2 , Tex3 , . . .
TexN}

STEP13: STOP

4.2 Image Hashing

The process of image hashing has two sub-processes
namely the 𝑖𝑖. Key point extraction, ii. Hash construction.
These are explained in the following sections.

4.2.1 Key Points Extraction

The Constant Keypoint selection is used for extracting
the key points of the grey images of the android apps.
Information about the feature point has the geometrical data
and the descriptions. The set of all the geometric data on the
feature points are denoted using the vector 𝑉𝑉 =
{𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛} where the 𝑉𝑉𝑉𝑉 = { 𝑥𝑥𝑚𝑚 , 𝑦𝑦𝑗𝑗 ,𝜎𝜎𝑖𝑖 ,Ȯ } and 𝑛𝑛
represents the total count of the feature points. Each of the
keypoint has all the Information on the location and the
scale with direction. The descriptor set denoted as a vector
𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … 𝑑𝑑𝑛𝑛} . Every D can have up to 128
representations in the gradient that distributed across the
feature points. Generically, the total count of the feature
points will be large. However, few of these will not be
robust when taken for consideration on the detection of
content manipulations. It gives the opinion that the feature
points which are not stable lost in different content
manipulations, and these points are not stable then removed
while the stable points retained. The algorithm for the
keypoint extraction given under Algo.2.

Algo. 2. Keypoint extraction

Input: Pre-processed Apk images

Output: Key points set K

STEP1: START

STEP2: FOR i=1 to k DO

STEP3: GENERATE DOG OF IMAGES

STEP4: DETERMINE THE CANDIDATE FEATURE
POINT VECTOR 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛}

STEP5: DETERMINE THE VECTOR DESCRIPTION
𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2, … 𝑑𝑑𝑛𝑛}

STEP6: APPLY FOURIER TRANSFORMATION TO
THE IMAGES

STEP7: GET THE TOP K KEYPOINT SET 𝐾𝐾 =
 { 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3, … 𝑘𝑘𝑛𝑛}

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

145

STEP8: OBTAIN GEOMETRIC INFORMATION OF
THE {k}

STEP9: IF NUMBER OF KEY POINTS < K

STEP10: SET FEATURE POINT VECTORS 𝑉𝑉 ≡ {0}

STEP11: RETURN THE FEATURE POINT SET K

STEP12: END IF

STEP13: END FOR

STEP13: STOP

For the process of enhancing the robustness in the proposed
method of image hashing, the critical regions detected for
extracting the spectral residue, which can eliminate all the
feature points that are not stable. The criteria for the same
given in Eq. (2) which preferred as a filtering process.

 Reverse Loc 𝑖𝑖𝑖𝑖 Sn > 𝐸𝐸(𝑆𝑆) (2)

Where, 𝐸𝐸(𝑆𝑆) = (1
𝑛𝑛

 ∗ ∑ 𝑆𝑆𝑖𝑖) 𝑛𝑛
𝑖𝑖 represents the mean

intensity of the n keypoints. If the 𝑆𝑆𝑖𝑖 length of the 𝑖𝑖𝑖𝑖ℎ point
is less when compared to the mean intensity, the particular
feature point is removed else the same will be reverse.

4.2.2 Hash construction

Once the key points generated, the features of the
textures that correspond to the local sector are obtained. In
order to ensure storage convenience, all the Information
pertaining to the keypoints are compressed and then
converted into binary values. The Hashing algorithm
proposed, in the initial state, the position, scales and the
orientation of all the keypoints are then used for the
formulation of position 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = { 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜕𝜕𝑖𝑖 } . The
Information on the geometry of the K is then denoted by the
vector 𝑃𝑃 = { 𝑃𝑃1,𝑃𝑃2, … 𝑃𝑃𝑛𝑛}

where, each P is transformed into a binary sequence, the
initial descriptor V on all the keypoints that has 128
dimension are then compressed into 32 dimensions, and
also 𝑉𝑉𝑉𝑉 is then normalized as |𝑉𝑉𝑖𝑖|2 = 1 where, i={1, 2, 3,
… ,n}. Every element in the 𝑉𝑉𝑖𝑖 is then subjected to
quantization with either 0 or 1 based on the rule given in Eq.
(3).

𝑞𝑞𝑉𝑉𝑖𝑖𝑗𝑗 = �1 , if �𝑉𝑉𝑖𝑖𝑗𝑗 > 𝛼𝛼 �
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (3)

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑉𝑉𝑖𝑖𝑗𝑗 is the jth element of 𝑉𝑉𝑖𝑖 and j is range one up to
32, α is threshold.

Finally, the end position P, Descriptions Q, and the
feature T forms the hash 𝐻𝐻 = {𝑃𝑃,𝑄𝑄,𝑇𝑇}. The normal
'image's size is kept as 256*256. As every value in the set

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 = { 𝑃𝑃1,𝑃𝑃2, … 𝑃𝑃𝑛𝑛} shall then described in an
8-Bit length sequence; the total ‘P’s length will be of 8 Bits
as 32 bits will be the 𝑄𝑄 = 𝑞𝑞𝑉𝑉1, 𝑞𝑞𝑉𝑉2 … 𝑞𝑞𝑉𝑉𝑛𝑛 . Similarly, the
texture T will have a length 32*k bits. Hence, the full
'Hash's length will be of 96k bits. Table 1 portrays the hash
elements.

Table 1. Portrays hash elements with length

Description Element Length
Position (P) 𝑃𝑃 = { 𝑃𝑃1 ,𝑃𝑃2 , … 𝑃𝑃𝑃𝑃 } 32*k bits
Quantized

descriptor(Q)
𝑉𝑉 = {𝑣𝑣1,𝑣𝑣2, … ,𝑣𝑣𝑛𝑛} 32*k bits

Texture Feature
(T)

T
= { Tex1 , Tex2 , . . . Texn}

32*k bits

4.3 Similarity checking phase

The similarity checking phase is the final phase of the

proposed method and comprises the following parts.

Hash comparison is made on the Hamming Distance
Calculation.

The feature comparison is done through the layout tree
formation method, and finally, the similarity checking is
done through the Layout Edit Distance method.

4.4 Hash distance calculation

The Normalized Hash Distance (NHD) is used here as a
metric for the evaluation of the similarity between the given
pair of image hashes and is obtained as

 𝑁𝑁𝑁𝑁𝑁𝑁(𝐻𝐻𝐻𝐻 ,𝐻𝐻𝐻𝐻) = 1
𝑁𝑁

 ∑ | 𝐻𝐻(𝑖𝑖) − ℎ2𝑙𝑙
𝑖𝑖 (𝑖𝑖)| (4)

Where 𝑖𝑖 denotes the length of the Hash, and the
𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻(𝑖𝑖) represents the elements in the Hash. The 𝐻𝐻
takes the value between 0 and 1. In the case of two images
being similar, the value of H will be tending to 0. For two
different images, the 𝐻𝐻 will be much greater than 0. A
predefined threshold value used for the current image for
deciding whether the image is similar or not when compared
to that of the source image. The threshold is set to values
between 0.1 and 0.4. The Hash distance is then calculated
through

 𝐻𝐻𝐻𝐻(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = ∑ |𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0) − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0)| (5)

Where the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are the 𝑁𝑁𝑁𝑁ℎ texture feature and
ith feature of the image hash.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

146

4.5 Layout Tree Formation

The SDK of Android gives a range of objects for
viewing, such as the Buttons, Text, and scrolls. Presents the
sample U.I. and the concerned Layout file. The following
hypothesis is taken for the construction of the layout tree.

A layout can be considered as the Tree data structure
where, the given node of the tree describes the element in
the lay file. The nodes in the tree reflect the elements of the
particular t tree. The name of the node corresponds to the
name of the element and the values contain all the attributes
concerned with the element. The relationship between the
nodes of a layout is same as that of the file. For instance, the
VIEW object has other sub-objects like the VIEW-GROUP,
then the latter is considered as the parent of VIEW. Fig. 2
shows the layout tree for the U.I. interface considered. The
other variations of the tree are also generated by changing
each feature of the lay out screen and finally the features are
compared with that of the original app and the similar
features are removed. This tree can be used for the detection
of apps that are similar. Initially, the 'layout's structure
defines the visual hierarchy of the U.I. Next, the repacked
applications have a similar Tree as they have to rely on the
original appearance to cheat the users. Last, the nodes
present in the layout graph with attributes exactly represent
the elements on the screen.

Fig. 2. Layout Tree for the UI

4.6 Similarity Calculation

The calculation of the similarity is done through the
Update Distance methods. The layout's updated distances
defined as one of the metrics for measuring the similarity of
the two-layer trees. For a given pair of mobile apps, initially,
their layout trees are obtained from the corresponding files.
The update distance is the minimal count of the operations
that required for the transformation of one layout to the

other layout tree. Node inserting and substitution are the
two operations performed.

In the similarity checking phase, the update distance

metric is used to detect the visual similarity between the
applications. This technique is intended to achieve
minimum time and space complexity of 𝑂𝑂(𝑚𝑚2𝑛𝑛2) and
O(mn), where the variables m, n denotes the no of nodes.
The similarity measure between a couple of apps directly
corresponds to the Update distance. It is to be noted that the
single app may have n number of layouts, and therefore, it
is essential for all the pairs to compared with that of the
original app. For example, if there are x number of layouts
distance in the app A and y in app B, the score of the
similarity is the minimal count of all the update distances
that exist between (m, n) pair. In order to provide an
optimized comparison, the layout trees that has the total
nodes less that of the threshold, say n is omitted for the
comparison. Next, the total count of the elements is used for
the reduction in the pairs to be compared. For example, if
the need to find the applications in a particular repository
whose similarity measure is less than the threshold value M.
In this case, prior to comparing the files, the comparator
initially calculates the number of elements in the apps. In
case their difference is larger than that of the threshold m,
the system ignores the same for comparison. It is due to the
fact that as per the update distance method, insertion is
treated as a transformational operation. The deviations of
the count of the elements in a layout pair file is that a one
that needs at least an insert operation for the transformation.
Using these optimization techniques, the total number of
comparisons needed to be reduced.

5. Experiment Set-Up and Results

The experiments were conducted on the repository of
95124 apps that are acquired from the third-party store.
Again, a total of about 456 unique apps were downloaded
from the play store and were compared to that of the apps
already in the repository. Table 2 gives the experimental
results of the initial metrics of True positive [TN, True
Negative [TN], False positive [FP] and False Negative [FN].
A total of 1354 similar apps were detected, and most of
them were cracked games and adware. If the detection
successfully identifies a repacked app, it is called as TP
event. If the genuine application is reported as repacked, it
is termed as FP If genuine app is identified as genuine, it is
termed as TN, and if it is the vice versa, it is termed as FN
The accuracy of the system is calculated based on the values
obtained for these metrics. Fig. 3 shows the comparative
results, which are self-explanatory.

LAYOUT

SCROL

EDIT
LAYOUT

TOOL

LAYOUT EDIT TEXT

Text

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

147

Table 2. Comparison of {TP, TN, FP, FN}

METHODS TP TN FP FN
DroidMOSS 81.2 8.61 78.2 7.84
AnDarwin 79.6 9.52 74.2 10.25
ViewDroid 64.5 11.56 68.5 12.59

Juxtapp 86.2 6.21 82.1 7.81
KPS:LBP 94.8 1.26 96.2 1.27

For the experimental analysis, the single manipulated
image set, and the combined manipulated set used. For both
the hash value, the images were classified as per the hash
values that are generated. The accuracy of the classification
was obtained from the different values of thresholds. The
Receiver Operating Character (ROC) then calculated. The
ROC for the content manipulations were computed using
the TP rate and FP rate which are obtained by

 FTP = 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆

 (6)

 FTP =
𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑
𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

 (7)

Fig. 3. Comparison of TP, TN, FP, FN

The Table 3 gives the comparative results of the values

of the rate of TP and FP for the different methods taken for
comparison. Fig. 4 shows the plot for the same. It is obvious
from the results that the proposed method has more TPR.
and less FPR. which ensures the efficiency.

Table 3. Rate of TP and FP

Fig. 4 TP and FP rate Plot

As the collision probability [22] takes up an important

characteristic in the experiments, the CP of the hash
techniques were calculated as

 𝑃𝑃(𝑇𝑇) = 1
�2𝜋𝜋𝜋𝜋

 ∫ 𝑥𝑥−𝜌𝜌
2𝜎𝜎

𝑡𝑡
𝑜𝑜 𝑑𝑑𝑑𝑑 (8)

where, T is the threshold assigned, 𝜎𝜎 is the Standard
deviation, and 𝜌𝜌 is the average mean.

5.1 Time complexity

The time complexity is also to be treated as a crucial
metric when Hashing techniques evaluated. In order to
compare the Man computation time, various hashing
methods are used for the generation of Hash values from N
number of images, and the average time taken for the
computation is calculated. For the experimental analysis,
the number of key points is set to 10, and hence the hash
length would be 960 Bits. The length seems to be large as
the Hash here consists of much geographical Information

METHODS TPR. FPR.
DroidMOSS 1.26 8.24
AnDarwin 2.54 5.62
ViewDroid 3.85 4.28

Juxtapp 4.86 3.58
KPS: LBP 8.21 1.51

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

148

texture features and Key-points of the images. This
Information helps a lot in the stability of the proposed
method and ensures the detection of even small tampering.
Table 4 shows the comparison of the ROC, Collision
Probability (CP) and Time complexity (TC) of the proposed
method to that of the other methods. It is seen that the
proposed method outperforms the other state of the art
methods taken for the comparison. Fig. 5 depicts the
graphical plot of the same.

Table 4. Comparison of ROC, Collision
Probability, and Time Complexity.

Fig. 5. Comparison of ROC, CP and TC

6. Conclusion

The android app repacking is the major issue that causes
a severe threat to the technical ecology of Android. The
available methods do not have high performance and also
suffer from various issues. This manuscript presents a novel
CKPS: LBP method for the detection of repacked Android
apps by detecting the visual similarity of the apps. The
Constant Keypoint selection used for the selection of key

points, and the Limited Binary pattern used for the Feature
selection. The experimental results produce high
performance in terms of the TPR and FPR. The time
complexity, ROC, and Collision probability were also
found to be better than the other competitive methods. The
future work - aiming at the increase in efficiency and to
apply this technique for the detection of code obfuscation,
which is also a severe threat to the Android devices.

References

[1] J. Li, X. Liu, H. Zhang, and D. Mu, “A Scalable Cloud-Based

Android App Repackaging Detection Framework,” Green,
Pervasive, and Cloud Computing Lecture Notes in Computer
Science, pp. 113–125, 2016.
https://doi.org/10.1007/978-3-319-39077-2_8

[2] X. Sun, J. Han, H. Dai, and Q. Li, “An Active Android
Application Repacking Detection Approach,” 2018 10th
International Conference on Communication Software and
Networks (ICCSN), 2018.
https://doi.org/10.1109/iccsn.2018.8488263

[3] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient
decentralized Android application repackaging detection
using logic bombs,” Proceedings of the 2018 International
Symposium on Code Generation and Optimization - CGO
2018, 2018.
 https://doi.org/10.1145/3168820

[4] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, and R.
Khoury, “Empirical study of android repackaged
applications,” Empirical Software Engineering, vol. 24, no. 6,
pp. 3587–3629, 2019.
https://doi.org/10.1007/s10664-019-09760-3

[5] M. O. F. K. Russel, S. S. M. M. Rahman, and T. Islam, “A
Large-Scale Investigation to Identify the Pattern of App
Component in Obfuscated Android
Malwares,” Communications in Computer and Information
Science Machine Learning, Image Processing, Network
Security and Data Sciences, pp. 513–526, 2020.
https://doi.org/10.1007/978-981-15-6318-8_42

[6] V. Rastogi, Y. Chen, and X. Jiang,
“DroidChameleon,” Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications
security - ASIA CCS 13, 2013.
 https://doi.org/10.1145/2484313.2484355

[7] X. Liao, Z. Geng, Y. Meng, Y. Yu, Y. Li, and D. Kang, “A
Detection Method for Android Repackaged Applications
with Malicious Features Similarity of Family
Homology,” 2017 International Conference on Computer
Technology, Electronics and Communication (ICCTEC),
2017.
https://doi.org/10.1109/ICOMSSC45026.2018.894158

6
[8] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting

repackaged smartphone applications in third-party android
marketplaces,” Proceedings of the second ACM conference

METHODS ROC CP TC
DroidMOSS 0.26 0.18 0.84

AnDarwin 0.57 0.67 0.76

ViewDroid 0.48 0.45 0.52

Juxtapp 0.68 0.54 0.61

KPS:LBP 0.91 0.94 0.21

https://doi.org/10.1007/978-3-319-39077-2_8
https://doi.org/
https://doi.org/10.1109/iccsn.2018.8488263
https://doi.org/10.1145/3168820
https://doi.org/10.1007/s10664-019-09760-3
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-981-15-6318-8_42
https://doi.org/10.1145/2484313.2484355
https://doi.org/10.1109/ICOMSSC45026.2018.8941586
https://doi.org/10.1109/ICOMSSC45026.2018.8941586

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.9, September 2023

149

on Data and Application Security and Privacy - CODASKY
12, 2012.
https://doi.org/10.1145/2133601.2133640

[9] A. Gharib and A. Ghorbani, “DNA-Droid: A Real-Time
Android Ransomware Detection Framework,” Network and
System Security Lecture Notes in Computer Science, pp. 184–
198, 2017.
https://doi.org/10.1007/978-3-319-64701-2_14

[10] J. Crussell, C. Gibler, and H. Chen, “AnDarwin: Scalable
Detection of Android Application Clones Based on
Semantics,” IEEE Transactions on Mobile Computing, vol.
14, no. 10, pp. 2007–2019, 2015.
https://doi.org/10.1109/TMC.2014.2381212

[11] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu,
“ViewDroid,” Proceedings of the 2014 ACM conference on
Security and privacy in wireless & mobile networks - WiSec
14, 2014.
https://doi.org/10.1109/TMC.2014.2381212

[12] Q. Chen, J. Wang, and Y. Wang, “An Online Approach for
Detecting Repackaged Android Applications Based on
Multi-user Collaboration,” 2015 IEEE 12th Intl Conf on
Ubiquitous Intelligence and Computing and 2015 IEEE 12th
Intl Conf on Autonomic and Trusted Computing and 2015
IEEE 15th Intl Conf on Scalable Computing and
Communications and Its Associated Workshops (UIC-ATC-
ScalCom), 2015.
https://doi.org/10.1109/UIC-ATC-ScalCom-

CBDCom-IoP.2015.66
[13] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,

“Juxtapp: A Scalable System for Detecting Code Reuse
among Android Applications,” Detection of Intrusions and
Malware, and Vulnerability Assessment Lecture Notes in
Computer Science, pp. 62–81, 2013.
https://doi.org/10.1007/978-3-642-37300-8_4

[14] C. Yuan, S. Wei, C. Zhou, J. Guo, and H. Xiang, “Scalable
and Obfuscation-Resilient Android App Repackaging
Detection Based on Behavior Birthmark,” 2017 24th Asia-
Pacific Software Engineering Conference (APSEC), 2017.
https://doi.org/10.1109/ APSEC.2017.54

[15] Z. Li, J. Sun, Q. Yan, W. Srisa-An, and Y. Tsutano,
“Obfusifier: Obfuscation-Resistant Android Malware
Detection System,” Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering Security and Privacy in
Communication Networks, pp. 214–234, 2019.
https://doi.org/10.1007/978-3-030-37228-6_11

[16] L. Li, D. Li, T. F. Bissyande, J. Klein, Y. L. Traon, D. Lo,
and L. Cavallaro, “Understanding Android App
Piggybacking,” 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C),
2017.
 https://doi.org/10.1109/ICSE-C.2017.109

[17] Z. Qin, Q. Zhang, X. Zhang, and Z. Yang, “An efficient
method of detecting repackaged android

applications,” International Conference on Cyberspace
Technology (CCT 2014), 2014.
https://doi.org/10.1049/cp.2014.1331

[18] H. Huang, S. Zhu, P. Liu, and D. Wu, “A Framework for
Evaluating Mobile App Repackaging Detection
Algorithms,” Trust and Trustworthy Computing Lecture
Notes in Computer Science, pp. 169–186, 2013.
https://doi.org/10.1007/978-3-642-38908-5_13

[19] F. Sierra and A. Ramirez, “Defending Your Android
App,” Proceedings of the 4th Annual ACM Conference on
Research in Information Technology - RIIT 15, 2015.
https://doi.org/10.1145/2808062.2808067

[20] Q. Zeng, L. Luo, Z. Qian, X. Du, Z. Li, C.-T. Huang, and C.
Farkas, “Resilient User-Side Android Application
Repackaging and Tampering Detection Using
Cryptographically Obfuscated Logic Bombs,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–
1, 2019.
https://doi.org/10.1109/TDSC.2019.2957787

[21] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding Android
Obfuscation Techniques: A Large-Scale Investigation in the
Wild,” Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering
Security and Privacy in Communication Networks, pp. 172–
192, 2018.
https://doi.org/10.1007/978-3-030-01701-9_10

[22] Y.-L. Chen, “An explicit and novel forward collision
probability index,” 2015 IEEE 10th Conference on Industrial
Electronics and Applications (ICIEA), 2015.
https://doi.org/10.1109/ICIEA.2015.7334399

M A Rahim Khan received the

M.Tech. degrees in Information

Technology from GGIP University

New Delhi in 2008, he worked as a

lecturer in Majmaah University Saudi

Arabia. Currently Ph.d Scholar in

Lingayas Vidyapeeth Fridabad India.

Dr. Manoj Kumar Jain (Associate

Professor CSE & In charge

Academics) Lingayas vidyapeeth

Fridabad India. His research area in

Neural Network, Information

Security, Wireless Sensor Netwo

https://doi.org/10.1145/2133601.2133640
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-64701-2_14
https://doi.org/10.1109/TMC.2014.2381212
https://doi.org/10.1109/TMC.2014.2381212
https://doi.org/10.1007/978-3-642-37300-8_4
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-030-37228-6_11
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F2808062.2808067
https://doi.org/10.1109/ICIEA.2015.7334399

