• Title/Summary/Keyword: Kernel Space

Search Result 237, Processing Time 0.026 seconds

An Efficient Network System Call Interface supporting minimum memory copy (메모리 복사를 최소화화는 효율적인 네트워크 시스템 호출 인터패이스)

  • 송창용;김은기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.397-402
    • /
    • 2004
  • In this paper, we have designed and simulated a new file transmission method. This method restricts memory copy and context switching happened in traditional file transmission. This method shows an improved performance than traditional method in network environment. When the UNIX/LINUX system that uses the existing file transfer technique transmits a packet to the remote system, a memory copy between the user and kernel space occurs over twice at least. Memory copy between the user and kernel space increase a file transmission time and the number of context switching. As a result, the existing file transfer technique has a problem of deteriorating the performance of file transmission. We propose a new algorithm for solving these problems. It doesn't perform memory copy between the user and kernel space. Hence, the number of memory copy and context switching is limited to the minimum. We have modified the network related source code of LINUX kernel 2.6.0 to analyzing the performance of proposed algorithm and implement new network system calls.

AIT: A method for operating system kernel function call graph generation with a virtualization technique

  • Jiao, Longlong;Luo, Senlin;Liu, Wangtong;Pan, Limin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2084-2100
    • /
    • 2020
  • Operating system (OS) kernel function call graphs have been widely used in OS analysis and defense. However, most existing methods and tools for generating function call graphs are designed for application programs, and cannot be used for generating OS kernel function call graphs. This paper proposes a virtualization-based call graph generation method called Acquire in Trap (AIT). When target kernel functions are called, AIT dynamically initiates a system trap with the help of a virtualization technique. It then analyzes and records the calling relationships for trap handling by traversing the kernel stacks and the code space. Our experimental results show that the proposed method is feasible for both Linux and Windows OSs, including 32 and 64-bit versions, with high recall and precision rates. AIT is independent of the source code, compiler and OS kernel architecture, and is a universal method for generating OS kernel function call graphs.

TIME DISCRETIZATION WITH SPATIAL COLLOCATION METHOD FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL

  • Kim Chang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.19-38
    • /
    • 2006
  • We analyze the spectral collocation approximation for a parabolic partial integrodifferential equations(PIDE) with a weakly singular kernel. The space discretization is based on the spectral collocation method and the time discretization is based on Crank-Nicolson scheme with a graded mesh. We obtain the stability and second order convergence result for fully discrete scheme.

  • PDF

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

Kernel Fisher Discriminant Analysis for Indoor Localization

  • Ngo, Nhan V.T.;Park, Kyung Yong;Kim, Jeong G.
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • In this paper we introduce Kernel Fisher Discriminant Analysis (KFDA) to transform our database of received signal strength (RSS) measurements into a smaller dimension space to maximize the difference between reference points (RP) as possible. By KFDA, we can efficiently utilize RSS data than other method so that we can achieve a better performance.

BEREZIN NUMBER INEQUALITIES VIA YOUNG INEQUALITY

  • Basaran, Hamdullah;Gurdal, Mehmet
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.523-537
    • /
    • 2021
  • In this paper, we obtain some new inequalities for the Berezin number of operators on reproducing kernel Hilbert spaces by using the Hölder-McCarthy operator inequality. Also, we give refine generalized inequalities involving powers of the Berezin number for sums and products of operators on the reproducing kernel Hilbert spaces.

SOLUTION OF THE SYSTEM OF FOURTH ORDER BOUNDARY VALUE PROBLEM USING REPRODUCING KERNEL SPACE

  • Akram, Ghazala;Ur Rehman, Hamood
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.55-63
    • /
    • 2013
  • In this paper, a general technique is proposed for solving a system of fourth-order boundary value problems. The solution is given in the form of series and its approximate solution is obtained by truncating the series. Advantages of the method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Numerical results show that the method employed in the paper is valid. Numerical evidence is presented to show the applicability and superiority of the new method.

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED QUESTIONS

  • Ramiz Tapdigoglu;Najwa Altwaijry;Mubariz Garayev
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2023
  • The Berezin symbol à of an operator A on the reproducing kernel Hilbert space 𝓗 (Ω) over some set Ω with the reproducing kernel kλ is defined by $${\tilde{A}}(\lambda)=\,\;{\lambda}{\in}{\Omega}$$. The Berezin number of an operator A is defined by $$ber(A):=\sup_{{\lambda}{\in}{\Omega}}{\mid}{\tilde{A}}({\lambda}){\mid}$$. We study some problems of operator theory by using this bounded function Ã, including estimates for Berezin numbers of some operators, including truncated Toeplitz operators. We also prove an operator analog of some Young inequality and use it in proving of some inequalities for Berezin number of operators including the inequality ber (AB) ≤ ber (A) ber (B), for some operators A and B on 𝓗 (Ω). Moreover, we give in terms of the Berezin number a necessary condition for hyponormality of some operators.

Random Elements in $L^1(R)$ and Kernel Density Estimators

  • Lee, Sung-Ho;Lee, Robert -Taylor
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • Random elements in $L^1(R)$ and some properties of $L^1(R)$ space are investigated with application to kernel density estimators. A weak law of large numbers for compact uniformly integrable random elements is introduced for further application.

  • PDF