1. Objectives The purpose of this study is to find the kinds & meaninings of Qi in Lee Je-Ma's writings. 2. Methods We analyzed Lee Je-Ma's writings which contain the related contents of Qi's kinds & meanings 3. Results and Conclusions 1) There are distinctive Qi features of $sorrow{\cdot}anger{\cdot}joy{\cdot}pleasure$(哀怒僖樂) which are different from one of seven mode emotions(七情) in ${\ulcorner}$Gyukchigo(格致藁)${\lrcorner}$. 2) When $Water{\cdot}grain's$ Qi(臟氣) is the base of the human's Qi, $Nature{\cdot}emotion's$ Qi(性${\cdot}$情氣) is managing. And $Lung{\cdot}Spleen{\cdot}Liver{\cdot}Kidneys's$ Qi(肺脾肝腎氣) is the representative concept resulted by the complex operation of $Water{\cdot}grain's$ Qi(水穀之氣) and $Nature{\cdot}emotion's$ Qi. Each Qi stands for its protensity as follows ; Lung's Qi for extrorse propensity of Yang(Z), Spleen's Qi for upward propensity of Yang(陽), Liver's Qi for introrse propensity of Eum(陰), Kidneys's Qi for downward propensity of Eum(陰). 3) Jang's Qi is more important than medicine's Qi and medicine's Qi has a limitation about recovering jang's Qi. So that it is very important to take care of one's mind. 4) Controling mind Qi is controling Nature & emotion's Qi. Thus controling mind Qi si the best plan for jang's Qi and controling with medicine's Qi is the next policy. 5) Qi influences all aspect of personality, disease, application of medicines and ordinary symptoms. So that Qi is the kernel of the Sasang Constitutional Medicine.
영상 리샘플링의 전형적인 방법은 원래의 디지털 영상을 연속 모델에 맞춘 뒤 원하는 샘플링율로 다시 샘플링하는 접근방식에 기초한다. B-스플라인 함수는 다른 함수에 비해 오실레이션이 적어 연속 모델에 주로 사용되어 온 함수이다. 이 논문의 주 목표는 비정규 최적 리샘플링 알고리즘의 유도이다. 이 알고리즘을 유도하기 위해서 세단계의 근사화가 필요하다: 1) 역행렬 연산을 통한 B-스플라인 계수 구하기, 2) 직교 투사 이론에 의해 유도된 최적 리샘플링 알고리즘을 이용하여 변환된 B-스플라인 계수 구하기, 3) 간접B-스플라인 변환을 통해 결과를 다시 신호 영역으로 바꾸기. 이러한 방법을 통해 정규 리샘플링에서 그 우수성이 입증된 B-spline을 비정규 리샘플링에서도 이용할 수 있으며 실험 결과를 통해 성능의 우수성을 확인할 수 있다.
스마트폰을 이용한 인간 활동 인식은 컴퓨터 지능 분야에서 뜨거운 연구 주제이다. 스마트폰에는 다양한 센서가 장착되어 있다. 이러한 센서의 데이터를 융합하면 응용프로그램에서 많은 활동을 인식할 수 있다. 그러나 이러한 장치는 활용 가능한 센서 수가 제한되기 때문에 리소스가 적으며, 최적의 성능과 효율적인 특징 추출을 달성하기 위해서는 특징 선택 및 분류 방법이 필요하다. 이 논문에서는 이러한 요구사항에 따라 스마트폰-기반 HAR 체계를 제안한다. 이 논문에서 제안된 방법은 가속도 센서, 자이로 센서, 기압 센서에서 시간-도메인 특징을 추출하며, 커널 판별 분석(KDA)과 SVM을 적용하여 높은 정확도로 활동을 인식한다. 이 방법은 각 활동에 대해 각 센서에서 가장 관련성이 높은 특징을 선택한다. 우리의 비교 결과는 제안된 시스템이 이전의 스마트폰-기반 HAR 시스템보다 성능이 우수함을 보여준다.
관측자료의 보완이나 확충을 위한 강수량 모의발생은 수문분석에 있어서 중요한 과제라고 할 수 있다. 강수량을 모의하는 방법은 크게 기존의 매개변수적 방법과 비매개변수적 방법 두 가지로 나눌 수 있고, 강수량 모의의 시간간격에 따라 일강수량 자료의 모의 또는 시간강수량 자료의 모의 등으로 구분할 수 있다. 지금까지, Markov모형은 일강수량 모의발생에 많이 이용되어왔다. 이러한 대부분 Markov모형들은 동질성모형으로 상태벡터를 구축하는데 있어서 자료의 크기가 작으면 모형구축의 어려움이 따르고 같은 월에 대한 상태벡터의 동질성을 가정하는 등의 문제가 있다. 실제 강수발생의 과정은 비정상적(nonstationary)이므로 이를 보완하기 위해, 된 논문에서는 일강수량을 기존의 매개변수적인 방법이 아닌 단변량과 다변량에 대하여 비매개변수적인 방법으로 접근하여 모의하는 방법에 대하여 분석하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권10호
/
pp.5129-5152
/
2016
Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a set of low-resolution (LR) images that are captured from different viewpoints (typically by different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an ill-posed problem and is typically computationally costly, we super-resolve multi-view LR images of the original scene via image fusion (IF) and blind deblurring (BD). First, we reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. We further solve the IF problem on the premise of calculating the depth map of the desired image ahead, and then solve the BD problem, in which the optimization problems with respect to the desired image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this approach is appropriate for camera array imaging because the blur kernel is typically unknown in practice. Corresponding experimental results using real and synthetic images demonstrate the effectiveness of the proposed method.
Objective: The objective was to determine standardized ileal digestibility (SID) of amino acids (AA) in 11 plant protein sources fed to growing pigs. Methods: Eleven feed ingredients used were sesame meal, two sources of soybean meal (SBM) produced in the Republic of Korea, a source of SBM produced in India, high-protein distillers dried grains (HPDDG), perilla meal, canola meal, copra meal, corn germ meal, palm kernel expeller, and tapioca distillers dried grains (TDDG). Experimental diets were prepared to contain each test ingredient as a sole source of AA, and a nitrogen-free diet was also prepared to estimate the basal ileal endogenous losses of AA. Twelve barrows surgically fitted with T-cannulas at the distal ileum with an initial body weight of 29.0 kg (standard deviation = 3.0) were individually housed in metabolism crates equipped with a feeder and a nipple drinker. A $12{\times}9$ incomplete Latin square design was employed with 12 experimental diets, 12 animals, and 9 periods. After a 5-d adaptation period, ileal digesta were collected on d 6 and 7 in each experimental period. Results: Values for apparent ileal digestibility of most indispensable AA in three sources of SBM were greater compared with other test ingredients except HPDDG and canola meal (p<0.05). Pigs fed diets containing SBM sources had also greater SID of most indispensable AA compared with those fed diets containing other test ingredients (p<0.05) except for HPDDG and canola meal. There was no difference in the apparent ileal digestibility and SID of AA among sources of SBM. The TDDG had the least value for the SID of methionine among test ingredients (p<0.05). Conclusion: The SID of most AA in SBM, HPDDG, and canola meal were greater than those in sesame meal, perilla meal, copra meal, and TDDG.
운영 체제의 코어에 Intel PT가 포함된 경우, 크래시 발생 시 디버거는 프로그램 상태를 검사할 수 있을 뿐만 아니라 크래시를 발생시킨 제어 플로우를 재구성할 수 있다. 또한, 커널 패닉 및 기타 시스템 정지와 같은 상황을 디버그하기 위해 실행 트레이스 범위를 전체 시스템으로 확장할 수도 있다. 2세대 PT인 WinIPT 라이브러리는 Windows 10 (버전 1809/Redstone 5)에서 제공하는 IOCTL 및 레지스트리 메커니즘을 통해 프로세스 별 및 코어 별 트레이스를 실행할 수 있는 추가 코드가 포함된 Intel PT 드라이버를 포함하고 있다. 즉 기존 1세대 PT에서 비정규화된 방식으로만 제한적인 접근이 가능했던 PT 트레이스 정보를 2세대 PT에서는 운영 체제에서 제공하는 IOCTL 및 레지스트리 메커니즘을 통해 프로세스 별 및 코어 별 트레이스를 실행할 수 있게 되었다. 본 논문에서는 1/2세대 PT를 이용하여 윈도우 환경에서 PT 데이터 패킷의 수집 저장 디코딩 및 악성코드 검출을 위한 방법을 비교 설명하였다.
상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.
Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.
F2FS는 SSD(Solid State Drive)를 위한 파일시스템 중의 하나로서 리눅스 운영체제의 커널에 채용되어 널리 사용되고 있다. F2FS는 플래시 메모리의 특성을 반영하여 성능을 높이기 위한 여러 가지 방안들을 적용하였는데, 그 중의 하나가 파일별 데이터 블록들의 주소 정보를 관리하는 인덱스 구조의 개선이다. 본 논문에서는 F2FS의 인덱스 구조를 더욱 개선하여 성능을 높이는 방안을 제시하였다. F2FS는 모든 인덱스 블록들에 대하여 논리적 번호로 기록하고 이것을 물리적 번호로 매핑하는 테이블을 사용한다. 본 논문에서는 인덱스 블록들 중에서 끝단의 블록만 논리적 번호를 적용하고 앞단의 블록들은 물리적 번호를 직접 적용함으로써, 데이터 블록 접근시에 매핑 테이블을 검색하는 회수를 기존의 1~4회에서 1~2회로 줄일 수 있음을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.