• Title/Summary/Keyword: Keller-Box Method

Search Result 6, Processing Time 0.026 seconds

Computation of boundary layer flow of porous medium based on finite difference method

  • Mohamed Amine Khadimallah;Mudassar Jalil;Muzamal Hussain;Elimam Ali
    • Advances in concrete construction
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2024
  • In this paper, boundary layer flow is observed through stretching cylinder exponentially with non-linear velocity. This cylinder is rested in porous medium. Appropriate similarity transformation is employed for the conversion of governing PDEs into ODEs. To compute the problem and solution series numerical method is applied and evaluated by using finite difference Keller-Box method. The velocity ratio, permeability parameter, Reynold number is figure out to examine the effect of on velocity profile. Fluid velocity and skin friction coefficient goes down with increment of Reynold number and permeability parameter. While reverse behavior is reported for velocity ratio. The results are validated with earlier investigations and found very well.

Numerical Study on Laminar Diffusion Flame with Radiation Along Vertical Wall (수직평판에서 복사열전달을 고려한 층류확산화염에 관한 수치적 연구)

  • 안중기;김진곤
    • Fire Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.9-20
    • /
    • 1994
  • To understand the phenomena of laminar diffusion flame along vortical walt, the numerical analysis has been performed. Keller-box method was used to solve the problem in the boundary layer. The governing equation is simplified by thin-flame approxiamtion. And energy and chemical species equations are normalized with Schvab-Zeldovich variables. A physical domain is divided the boundary layer along streamwise coordinate as the combustion region and the propagation region. And Radiation model is concerned in these region. As a result, typical phenomena have been observed. Comparison of the numerical results with experimental data shows that the present method can successfully predict phenomena of laminar diffusion flame along upright surface.

  • PDF

MIXED FINITE VOLUME METHOD ON NON-STAGGERED GRIDS FOR THE SIGNORINI PROBLEM

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.249-260
    • /
    • 2008
  • In this work we propose a mixed finite volume method for the Signorini problem which are based on the idea of Keller's finite volume box method. The triangulation may consist of both triangles and quadrilaterals. We choose the first-order nonconforming space for the scalar approximation and the lowest-order Raviart-Thomas vector space for the vector approximation. It will be shown that our mixed finite volume method is equivalent to the standard nonconforming finite element method for the scalar variable with a slightly modified right-hand side, which are crucially used in a priori error analysis.

  • PDF

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70

A Numerical Study on Mixed Convection in Boundary Layer Flows over Inclined Surfaces (경사진 평판 주위에서 경계층유동의 혼합대류에 관한 연구)

  • 김동현;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.725-733
    • /
    • 1990
  • An analysis of laminar mixed convection flow adjacent to the inclined flat surface which is subjected to a uniform temperature in a uniform free stream is performed. Nonsimilar boundary layed equation are derived by using the mixed convection parameters such that smooth transition from the purely forced convection limit to the purely free convection limit is possible. The governing equations are solved by a finite difference method using the coupled box scheme of sixth order. Numerical results are presented for prandtl numbers of 0.7 and 7 with the angle of inclination ranging from 0 to 90 degree from the vertical. The velocity distributions for the buoyancy assisting flow exhibit a significant overshoot above the free stream value in the region of intense mixed convection and the velocity field is found to be more sensitive to the buoyancy effect than the temperature field. The separation point near the wall was obtained for the buoyancy opposing flow. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the local Grashoff number in the mixed convection parameter. For large Prandtl number, the Nusselt number and the friction factor decrease significantly near the separation point. Present numerical predictions are in good agreement with recent experimental results by Ramachandran.

FALKNER-SKAN EQUATION FOR FLOW PAST A MOVING WEDGE WITH SUCTION OR INJECTION

  • Ishak, Anuar;Nazar, Roslinda;Pop, Ioan
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.67-83
    • /
    • 2007
  • The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter ($f_0$) and the ratio of free stream velocity to boundary velocity parameter (${\lambda}$) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values of $f_0$, m and ${\lambda}$ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.