• 제목/요약/키워드: Kaplan-Meier Estimator

검색결과 32건 처리시간 0.02초

중도절단 회귀모형에서 역절단확률가중 방법 간의 비교연구 (A comparison study of inverse censoring probability weighting in censored regression)

  • 신정민;김형우;신승준
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.957-968
    • /
    • 2021
  • 역중도절단확률가중(inverse censoring probability weighting, ICPW)은 생존분석에서 흔히 사용되는 방법이다. 중도절단 회귀모형과 같은 ICPW 방법의 응용에 있어서 중도절단 확률의 정확한 추정은 핵심적인 요소라고 할 수 있다. 본 논문에서는 중도절단 확률의 추정이 ICPW 기반 중도절단 회귀모형의 성능에 어떠한 영향을 주는지 모의실험을 통하여 알아보았다. 모의실험에서는 Kaplan-Meier 추정량, Cox 비례위험(proportional hazard) 모형 추정량, 그리고 국소 Kaplan-Meier 추정량 세 가지를 비교하였다. 국소 KM 추정량에 대해서는 차원의 저주를 피하기 위해 공변량의 차원축소 방법을 추가적으로 적용하였다. 차원축소 방법으로는 흔히 사용되는 주성분분석(principal component analysis, PCA)과 절단역회귀(sliced inverse regression)방법을 고려하였다. 그 결과 Cox 비례위험 추정량이 평균 및 중위수 중도절단 회귀모형 모두에서 중도절단 확률을 추정하는 데 가장 좋은 성능을 보여주었다.

극단적인 오른쪽 관측중단모형에서 생존함수의 추정 (Estimation of the Survival Function under Extreme Right Censoring Model)

  • 이재만
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.225-233
    • /
    • 2000
  • 수명시험에서 시험에 장기간 노출된 대상 부품이나 실험 대상자의 수명은 관측되는 경우보다 관측중단이 일어나기가 쉽다. 이와 같은 경우에 임의중단모형에서 생존함수 추정량으로 흔히 이용되는 Kaplan과 Meier의 추정량은 수명분포의 오른쪽 꼬리부분에서 심각한 편의가 발생된다. 이러한 문제점에 대한 대안으로 정상적으로 관측된 최장수명보다 큰 관측중단수명이 많은 극단적인 오른쪽 관측중단모형에서 새로운 비모수적 생존함수 추정량을 제안하고 그 특성을 몬테칼로 모의실험을 통하여 기존의 추정량과 비교 분석하였다.

  • PDF

Comparison of the Kaplan-Meier and Nelson Estimators using Bootstrap Confidence Intervals

  • Cha, Young Joon;Lee, Jae Man
    • 품질경영학회지
    • /
    • 제23권4호
    • /
    • pp.42-51
    • /
    • 1995
  • The bootstrap confidence intervals are a computer-based method for assigning measures of accuracy to statistical estimators. In this paper we examine the small sample behavior of the Kaplan-Meier and Nelson-type estimators for the survival function using the bootstrap and asymptotic normal-theory confidence intervals. The Nelson-type estimator is nearly always better than the Kaplan-Meier estimator in the sense of achieved error rates. From the point of confidence length, the reverse is true. Also, we show that the bootstrap confidence intervals are better than the asymptotic normal-theory confidence intervals in terms of achieved error rates and confidence length.

  • PDF

경쟁적 위험하에서의 신뢰성 분석 (Reliability Analysis under the Competing Risks)

  • 백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

A Comparative Study on Nonparametric Reliability Estimation for Koziol-Green Model with Random Censorship

  • Cha, Young-Joon;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.231-237
    • /
    • 1997
  • The Koziol-Green(KG) model has become an important topic in industrial life testing. In this paper we suggest MLE of the reliability function for the Weibull distribution under the KG model. Futhermore, we compare Kaplan-Meier estimator, Nelson estimator, Cheng & Chang estimator, and Ebrahimi estimator with proposed estimator for the reliability function under the KG model.

  • PDF

A Study on Properties of the survival function Estimators with Weibull approximation

  • 이재만;차영준
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.109-119
    • /
    • 2003
  • In this paper we propose a local smoothing of the Nelson type estimator for the survival function based on an approximation by the Weibull distribution function. It appears that Mean Square Error and Bias of the smoothed estimator of the Nelson type survival function estimator is significantly smaller then that of the smoothed estimator of the Kaplan-Meier survival function estimator.

  • PDF

A Study on Properties of the survival function Estimators with Weibull approximation

  • Lee, Jae-Man;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.279-287
    • /
    • 2003
  • In this paper we propose a local smoothing of the Nelson type estimator for the survival function based on an approximation by the Weibull distribution function. It appears that Mean Square Error and Bias of the smoothed estimator of the Nelson type survival function estimators are significantly smaller than that of the smoothed estimator of the Kaplan-Meier survival function estimator.

  • PDF

Estimation of Treatment Effect for Bivariate Censored Survival Data

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.1017-1024
    • /
    • 2003
  • An estimation problem of treatment effect for bivariate censored survival data is considered under location shift model between two sample. The proposed estimator is very intuitive and can be obtained in a closed form. Asymptotic results of the proposed estimator are discussed and simulation studies are performed to show the strength of the proposed estimator.

The Asymptotic Properties of Mean Residual Life Function on Left Truncated and Right Censoring Model

  • Moon, Kyoung-Ae;Shin, Im-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권1호
    • /
    • pp.99-109
    • /
    • 1997
  • The estimation procedure of mean residual life function has been placed an important role in the study of survival analysis. In this paper, the product limit estimator on left truncated and right censoring model is proposed with asymptotic properties. Also, the small sample properties are investigated through the Monte Carlo study and the proposed product limit type estimator is compared with ordinary Kaplan-Meier type estimator.

  • PDF

The Estimation of MRLF for Whole Line on LTRC Model

  • Shin, Im-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.47-56
    • /
    • 1999
  • In this paper, for whole line ($0,\;{\infty}$), the estimation procedure of mean residual life function using product-limit estimator is studied with asymptotic properties. And also, the small sample properties of proposed estimator of MRLF are investigated through Monte Carlo study and compared with Kaplan-Meier type estimator.

  • PDF