• Title/Summary/Keyword: Kannan type mapping

Search Result 5, Processing Time 0.018 seconds

EXTENSIONS OF BANACH'S AND KANNAN'S RESULTS IN FUZZY METRIC SPACES

  • Choudhur, Binayak S.;Das, Krishnapada;Das, Pradyut
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.265-277
    • /
    • 2012
  • In this paper we establish two common fixed point theorems in fuzzy metric spaces. These theorems are generalisations of the Banach contraction mapping principle and the Kannan's fixed point theorem respectively in fuzzy metric spaces. Our result is also supported by examples.

FIXED POINTS OF GENERALIZED KANNAN TYPE MAPPINGS IN GENERALIZED MENGER SPACES

  • Choudhury, Binayak S.;Das, Krishnapada
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.529-537
    • /
    • 2009
  • Generalized Menger space introduced by the present authors is a generalization of Menger space as well as a probabilistic generalization of generalized metric space introduced by Branciari [Publ. Math. Debrecen 57 (2000), no. 1-2, 31-37]. In this paper we prove a Kannan type fixed point theorem in generalized Menger spaces. We also support our result by an example.

ON COMMON AND SEQUENTIAL FIXED POINTS VIA ASYMPTOTIC REGULARITY

  • Bisht, Ravindra Kishor;Panja, Sayantan;Roy, Kushal;Saha, Mantu
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.163-176
    • /
    • 2022
  • In this paper, we introduce some new classes of generalized mappings and prove some common fixed point theorems for a pair of asymptotically regular mappings. Our results extend and improve various well-known results due to Kannan, Reich, Wong, Hardy and Rogers, Ćirić, Jungck, Górnicki and many others. In addition to it, a sequential fixed point for a mapping which is the point-wise limit of a sequence of functions satisfying Ćirić-Proinov-Górnicki type mapping has been proved. Supporting examples have been given in strengthening hypotheses of our established theorems.

Application of Opposition-based Differential Evolution Algorithm to Generation Expansion Planning Problem

  • Karthikeyan, K.;Kannan, S.;Baskar, S.;Thangaraj, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.686-693
    • /
    • 2013
  • Generation Expansion Planning (GEP) is one of the most important decision-making activities in electric utilities. Least-cost GEP is to determine the minimum-cost capacity addition plan (i.e., the type and number of candidate plants) that meets forecasted demand within a pre specified reliability criterion over a planning horizon. In this paper, Differential Evolution (DE), and Opposition-based Differential Evolution (ODE) algorithms have been applied to the GEP problem. The original GEP problem has been modified by incorporating Virtual Mapping Procedure (VMP). The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units have been considered. The results have been compared with Dynamic Programming (DP) method. The ODE performs well and converges faster than DE.

NEW BEST PROXIMITY POINT RESULTS FOR DIFFERENT TYPES OF NONSELF PROXIMAL CONTRACTIONS WITH AN APPLICATION

  • Khairul Habib Alam;Yumnam Rohen;S. Surendra Singh;Kshetrimayum Mangijaobi Devi;L. Bishwakumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.581-596
    • /
    • 2024
  • A new variety of non-self generalized proximal contraction, called Hardy-Rogers α+F-proximal contraction, is shown in this work. Also, with an example, we prove that such contractions satisfying some conditions must have a unique best proximity point. For some particular values of the constants, that we have used to generalize the proximal contraction, we conclude different α+F-proximal contraction results of the types Ćirić, Chatterjea, Reich, Kannan, and Banach with proof, that all such type of contractions must have unique best proximity point. We also apply our result to solve a functional equation.