DOI QR코드

DOI QR Code

ON COMMON AND SEQUENTIAL FIXED POINTS VIA ASYMPTOTIC REGULARITY

  • Received : 2021.01.02
  • Accepted : 2021.08.23
  • Published : 2022.01.31

Abstract

In this paper, we introduce some new classes of generalized mappings and prove some common fixed point theorems for a pair of asymptotically regular mappings. Our results extend and improve various well-known results due to Kannan, Reich, Wong, Hardy and Rogers, Ćirić, Jungck, Górnicki and many others. In addition to it, a sequential fixed point for a mapping which is the point-wise limit of a sequence of functions satisfying Ćirić-Proinov-Górnicki type mapping has been proved. Supporting examples have been given in strengthening hypotheses of our established theorems.

Keywords

Acknowledgement

The authors are thankful to the referee for his/her valuable suggestions for the improvement of the paper. Sayantan Panja and Kushal Roy both acknowledge the support of the Council of Scientific and Industrial Research (CSIR), New Delhi, India. Due to the policy of the journal which requires to list authors surnames in alphabetical order, the order of authors is looking like this. However, the order of the authors should be read as K. Roy, S. Panja, M. Saha and R. K. Bisht.

References

  1. J. B. Baillon, R. E. Bruck, and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), no. 1, 1-9.
  2. R. K. Bisht, A note on the fixed point theorem of G'ornicki, J. Fixed Point Theory Appl. 21 (2019), no. 2, Paper No. 54, 3 pp. https://doi.org/10.1007/s11784-019-0695-x
  3. R. K. Bisht and N. K. Singh, On asymptotic regularity and common fixed points, J. Anal. 28 (2020), no. 3, 847-852. https://doi.org/10.1007/s41478-019-00213-0
  4. F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575. https://doi.org/10.1090/S0002-9904-1966-11544-6
  5. D. Dey, R. Fierro, and M. Saha, Well-posedness of fixed point problems, J. Fixed Point Theory Appl. 20 (2018), no. 2, Paper No. 57, 12 pp. https://doi.org/10.1007/s11784-018-0538-1
  6. J. Gornicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl. 21 (2019), no. 1, Paper No. 29, 20 pp. https://doi.org/10.1007/s11784-019-0668-0
  7. G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
  8. J. H. Jo, Some generalizations of fixed point theorems and common fixed point theorems, J. Fixed Point Theory Appl. 20 (2018), no. 4, Paper No. 144, 17 pp. https://doi.org/10.1007/s11784-018-0631-5
  9. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), no. 4, 261-263. https://doi.org/10.2307/2318216
  10. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. https://doi.org/10.1155/S0161171286000935
  11. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
  12. A. R. Khan and D. M. Oyetunbi, On some mappings with a unique common fixed point, J. Fixed Point Theory Appl. 22 (2020), no. 2, Paper No. 47, 7 pp. https://doi.org/10.1007/s11784-020-00781-w
  13. S. Panja, K. Roy, M. Saha, and R. K. Bisht, Some fixed point theorems via asymptotic regularity, Filomat 34 (2020), no. 5, 1621-1627. https://doi.org/10.2298/FIL2005621P
  14. A. Pant and R. P. Pant, Orbital continuity and fixed points, Filomat 31 (2017), no. 11, 3495-3499. https://doi.org/10.2298/fil1711495p
  15. V. Pata, Fixed Point Theorems and Applications, Unitext, 116, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-19670-7
  16. P. D. Proinov, Fixed point theorems in metric spaces, Nonlinear Anal. 64 (2006), no. 3, 546-557. https://doi.org/10.1016/j.na.2005.04.044
  17. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
  18. B. E. Rhoades, S. Sessa, M. S. Khan, and M. D. Khan, Some fixed point theorems for Hardy-Rogers type mappings, Internat. J. Math. Math. Sci. 7 (1984), no. 1, 75-87. https://doi.org/10.1155/S0161171284000077
  19. K. Roy and M. Saha, Fixed points of mappings over a locally convex topological vector space and Ulam-Hyers stability of fixed point problems, Novi Sad J. Math. 50 (2020), no. 1, 99-112. https://doi.org/10.30755/NSJOM.09198
  20. K. Roy and M. Saha, Generalized contractions and fixed point theorems over bipolar conetvs b-metric spaces with an application to homotopy theory, Mat. Vesnik 72 (2020), no. 4, 281-296.
  21. M. Saha and A. Ganguly, Random fixed point theorem on a Ciric-type contractive mapping and its consequence, Fixed Point Theory Appl. 2012 (2012), 209, 18 pp. https://doi.org/10.1186/1687-1812-2012-209
  22. K. P. R. Sastry, S. V. R. Naidu, I. H. N. Rao, and K. P. R. Rao, Common fixed points for asymptotically regular mappings, Indian J. Pure Appl. Math. 15 (1984), no. 8, 849-854.
  23. P. Srivastava and V. K. Gupta, A note on common fixed points, Yokohama Math. J. 19 (1971), no. 2, 91-95.
  24. C. S. Wong, Common fixed points of two mappings, Pacific J. Math. 48 (1973), 299-312. http://projecteuclid.org/euclid.pjm/1102945724 https://doi.org/10.2140/pjm.1973.48.299