• Title/Summary/Keyword: Kakutani map

Search Result 5, Processing Time 0.015 seconds

RECENT RESULTS AND CONJECTURES IN ANALYTICAL FIXED POINT THEORY

  • Park, Se-Hie
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • We survey recent results and some conjectures in analytical fixed point theory. We list the known fixed point theorems for Kakutani maps, Fan-Browder maps, locally selectionable maps, approximable maps, admissible maps, and the better admissible class $\cal{B}$ of maps. We also give 16 conjectures related to that theory.

  • PDF

FIXED POINT THEOREMS, SECTION PROPERTIES AND MINIMAX INEQUALITIES ON K-G-CONVEX SPACES

  • Balaj, Mircea
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.387-395
    • /
    • 2002
  • In [11] Kim obtained fixed point theorems for maps defined on some “locally G-convex”subsets of a generalized convex space. Theorem 2 in Kim's article determines us to introduce, in this paper, the notion of K-G-convex space. In this framework we obtain fixed point theorems, section properties and minimax inequalities.

Coincidences of composites of u.s.c. maps on h-spaces and applications

  • Park, Seh-Ie;Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.251-264
    • /
    • 1995
  • Applications of the classical Knaster-Kuratowski-Mazurkiewicz (si-mply, KKM) theorem and the fixed point theory of multifunctions defined on convex subsets of topological vector spaces have been greatly improved by adopting the concept of convex spaces due to Lassonde [L1]. In this direction, the first author [P5] found that certain coincidence theorems on a large class of composites of upper semicontinuous multifunctions imply many fundamental results in the KKM theory.

  • PDF

WEAKLY RELAXED $\alpha$-SEMI-PSEUDOMONOTONE SET- VALUED VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Lee, Bok-Doo
    • The Pure and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.231-242
    • /
    • 2004
  • In this paper, we introduce weakly relaxed $\alpha$-pseudomonotonicity and weakly relaxed $\alpha$-semi-pseudomonotonicity of set-valued maps. Using the KKM technique, we obtain existence of solutions to the variational-like inequalities with weakly relaxed $\alpha$-pseudomor.otone set-valued maps in reflexive Banach spaces. We also present the solvability of the variational-like inequalities with weakly relaxed $\alpha$-semi-pseudomonotone set-valued maps in arbitrary Banach spaces using Kakutani-Fan-Glicksberg fixed point theorem.

  • PDF

NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS

  • Park, Sehie;Kim, Ilhyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.139-149
    • /
    • 1989
  • pp.Hartman and G. Stampacchia [6] proved the following theorem in 1966: If f:X.rarw. $R^{n}$ is a continuous map on a compact convex subset X of $R^{n}$ , then there exists $x_{0}$ ..mem.X such that $x_{0}$ , $x_{0}$ -x>.geq.0 for all x.mem.X. This remarkable result has been investigated and generalized by F.E. Browder [1], [2], W. Takahashi [9], S. Park [8] and others. For example, Browder extended this theorem to a map f defined on a compact convex subser X of a topological vector space E into the dual space $E^{*}$; see [2, Theorem 2]. And Takahashi extended Browder's theorem to closed convex sets in topological vector space; see [9, Theorem 3]. In Section 2, we obtain some variational inequalities, especially, generalizations of Browder's and Takahashi's theorems. The generalization of Browder's is an earlier result of the first author [8]. In Section 3, using Theorem 1, we improve and extend some known fixed pint theorems. Theorems 4 and 8 improve Takahashi's results [9, Theorems 5 and 9], respectively. Theorem 4 extends the first author's fixed point theorem [8, Theorem 8] (Theorem 5 in this paper) which is a generalization of Browder [1, Theroem 1]. Theorem 8 extends Theorem 9 which is a generalization of Browder [2, Theorem 3]. Finally, in Section 4, we obtain variational inequalities for multivalued maps by using Theorem 1. We improve Takahashi's results [9, Theorems 21 and 22] which are generalization of Browder [2, Theorem 6] and the Kakutani fixed point theorem [7], respectively.ani fixed point theorem [7], respectively.

  • PDF