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COINCIDENCES OF COMPOSITES OF U.S.C.
MAPS ON H-SPACES AND APPLICATIONS

SEHIE PARK AND HooNJOO KIM

1. Introduction

Applications of the classical Knaster- Kuratowski- Mazurkiewicz
(si- mply, KKM) theorem and the fixed point theory of multifunctions
defined on convex subsets of topological vector spaces have been greatly
improved by adopting the concept of convex spaces due to Lassonde
[L1]. In this direction, the first author [P5] found that certain coinci-
dence theorems on a large class of composites of upper semicontinuous
multifunctions imply many fundamental results in the KKM theory.

On the other hand, the concept of convex spaces was extended by
Horvath [H1-5] to spaces having certain families of contractible subsets
or H-spaces. In this direction, a number of authors extended important
results on convex spaces to those on H-spaces. See Bardaro and Cep-
pitelli [BC1-3], Ding et al. [Di, DKT1-2, DTy}, Park [P1-3], Tarafdar
[T], and H. Kim [K].

In the present paper, we extend the main coincidence theorem in [P5]
to H-spaces and apply it to obtain a far-reaching generalization of the
KKM theorem, fixed point or coincidence theorems for H-spaces, and
other results. We also obtain open-valued versions of a KKM theorem
and a coincidence theorem for H-spaces. Many of the main results in
the above-mentioned papers are extended and unified. Especially, the
main theorems of [Di] are improved and corrected.

Received January 25, 1994.

1991 AMS Subject Classifications: Primary 54C65, 54H25, 52A07, 47H10, 55M20.

Key words and phrases: KKM theorem, multifunction, upper semicontinuous
(u.s.c.), contractible, acyclic, convex space, D-convex, polytope, H-space, c-space,
H-convex, H-subspace, Kakutani map, acyclic map, open-valued KKM theorem

Supported in part by the Basic Sciences Research Institute Program, Ministry
of Education, 1992.



252 Sehie Park and Heonjoo Kim

2. Preliminaries

For the terminology and notations, we follow mainly [P1-5].

A multifunction (simply, map) F: X —o Y is a function from a set
X into the power set of a set Y. Let F(A) = [J{Fx : v € A} for
4 C X and F 7y ={r € X 1y € Fe}fory € Y. As usual, the set
Gr(F) = {{r,y): y € Fr} is called the graph of F.

For t.opologudl spaces X and Y. amap F: X — Y 1s said to be
wpper semicontinuous (u.s.c.) if for each closed set B C Y, F7(B) =
{re X :FanB#0}is (losc(l in X and compactif FiX)is contained
in a compact subset of Y.

A subset € of a topological space .V is said to be compactly closed
[resp. open] in X if for every compact set ¥ C X, the set CNA is closed
[resp. open] in V. A topological space X is said to be contractible if
the identity map 1y of X is howotopie to a coustant map; aud aeyelic
if all of its reduced Cech homology groups over rationals vanish.

It and ~ denote the interior and closure, resp.

For a set D, let (D) denote the set of all nonempty finite subsets of
D.

Let X De a set (in a vector space) and D a nonempty subset of
. Then (X, D) is called a convez spuce [P5] if for each N € (D), its
convex ludl co N is contalned in X and X has a topology that induces
the Euclidean topology on such conver hulls. Sueh convex hull will be
called a polytope. A subsct 4 of ‘\ is waid to be D-cenvex if, for any
N e (D), N Aimplies coN ¢ 4 If X = D, thon X = (X, X)
becomes a convex space in the sense of Lassonde [L1].

A triple (X, D;T7) 15 called an If.»'p(:('f [Pl 2} if X is a topological
space, D a nonempty subset of X, and TV = {Ta} : famii\' of con-
tractible subsets of X 1ndexed by A ¢ (D) r»u(,h that T4  T'p when-
ever A C B € J)) (The triple 1s called a e-space 1 [H.)} whenever
XN =D) Y= we denote (XM instead of (3. X T). For an
H-space (X, T )dll( any nonempty subset Y oof X we Lave an H-space
(XY, T

Any convex space (X, D) is an H-space (X, D) Ly putting 'y =
co A for 4 € (D).

For an (X, D:T), a subset " of X is sald to be H-conver il for
each 4 € (D), 4 C C inlpli(w I'a ¢ . A subset [ of X is called
an H-subspace of (N, D:T) i LN D 5 0 and for every A € (LN D),
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I'a N L is contractible. This is equivalent to saying that the triple
(L, LN D;{TaNL})is an H-space.

Given a class X of maps, X(X,Y) denotes the set of all maps F :
X —o Y belonging to X, and X, the set of all finite composites of maps
in X.

For topological spaces X and Y, we define

fFeC(X,Y) < [ is a (single-valued) continuous function.

T € K(X,Y) < T is a Kakutani map; that is, Y is a convex space
and T is u.s.c. with nonempty compact convex values.

T € V(X,Y) &= T is an acyclic map; that is, T is u.s.c. with
compact acyclic values,

A class A of maps 1s one satisfying:

(1) A contains the class C of (single-valued) continuous functions;
(i1) each F € 2. is u.s.c. and compact-valued; and

(ii1) for any polytope P, each F' € (P, P) has a fixed point.

Examples of 2 are C, K,V, the Aronszajn maps M (with Rs values)
[Gr], the O'Neill maps N (with values consisting of one or m acyclic
components, where m is fixed) [Gr], the approachable maps in topo-
logical vector spaces [BD1,2], the adnissible maps of Gérniewicz [Go,
the permissible maps of Dzedzej [Dz], and others.

Further, we define the following:

T € UI(X,Y) <= for any o-compact subset ' of X, there is a
T ¢ A(K,Y) such that Ta  Ta for cach r € K.

T € AXX,Y) <= for any compact subset I of X. there is a
T € A(K,Y) as above.

The class K} due to Lassonde [L3] and V" due to Park, Singh, and
Watson [PSW] belong to 27. Note that 2 < 2, C A7 C AF. For
details, see Park [P5] or [PK].

3. Coincidence theorems for H-spaces

In this section, we give a basic coincidence theorem.
Let A, denote an n-simplex. We need the following:

LEMMA. Let (X, D:T) be an H-space where D = {ag,1),...,2,} €
(X). Then there exists an f € C(A,,X) such that f(A;) C T'y for
each J € (D), where A is the face of A,, corresponding to J.
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Lemma is given implicitly by Horvath [H2, Théoréme 1], [H3, The-
orem 1] and explicitly by Ding and Tan [DT, Lemma 1] and Horvath
[(H4, Théoréme 1], [H5, Theorem 1.1].

Our main result is the following general coincidence theorem related
to the class A%

THEOREM 1. Let (X, D;T') be an H-space, Y a Hausdorff space,
F e A (X)Y), and K a nonempty compact subset of Y. Let S: D —o
Y and T : X —o Y satisfy the following:

for each « € D, Sz is compactly open in'Y';

1)
(1 2) foreach y € F(X), M € (S7y) implies Tpy ¢ T y;
3) F(XO)NK C S(D); and
tl 4) cither
(1) Y\ C 7\f) for some M & {D): or
(1) for (d(h N ¢ = (D), there exists a compact H-subspace Ly of

X containing N such that F{Ly WK C S(Ly N D).
Then T and F has a coincidence point « € X that is, T N FZ # {).

Proof. Since F(X )N L is compact and covered by compactly open
sets Sa by (1.1) and (1.3), there exists an N € (D) such that F(X )N
I C S(N).

Case (1). Since Y\L < S(M) for some M € (D) by (i), we have
F(X) C S(4) where A = MUN = {vo, 21, ,2,} € (D). Then,
by Lemma, there exists an f € C(4A,,, X) such that f(A,) C T'4 and
H(Ay) C Ty for each J € (4), where A, = (o{eo,e], L€y} and Ay
is the face of A, corresponding to J. Since f(A, ) is compact in X and
FeAdr(X,Y), th(u exists a F € Ao F(An), Y) such that Fo ¢ Fr
for each a ¢ f . Then Ff(A,,) 1s compact in F(‘,\j, since it is the
image of the uml]m(,t set (A, ) under the compact valued w.s.c. map

F. Let {Ai b, be the partition of unity subordinated to the cover
{SeiVFfA )N, of Ff(A,)
Define a continuous map p: Ff{A, 1 -+ A, by

py_L)\ Je; = Z Ailyye;  for yEFf(An),

=0 LE/’\

where 1 € N, &= A(y) # 0 => y € Sa; <= »; € S7y. By (1.2),
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we have fp(y) € f(An,) C Tn, C T~y for each y € Ff(A,); that is,
y € (Tfpy.

Since pFf € Ac(An, Ayn), pFf has a fixed point z € A,; that is,
zE(pr)z Put £ = fz. Since p~ zN(Ff)z=p~zNFz # §, for any
y € p~2NEz, wehaveyGFf(A fpy:fz——r andy € (T fp)y =
Ti. Therefore, p~z N Fz C Tk and hence T2 N Fz C TiNFi # 0.

Case (ii). For an N € (D) such that F(X)Nn K < S(N), consider
the set Ly in (1.4).

We claim that F(Ly) € S(Ly N D) for F € A(Ln,Y) satisfying
Fz C Fz for each z € Ly. In fact, note that

F(LNM)NK c F(X)NnK ¢ S(N) < S(Ly N D).

On the other hand, F(Ly)\K C F(Ly)\K C S(Ly N D) by (1.4).
Therefore, we have F(LN) C S(Lny N D).

Note that I:"(LN) is compact since it is the image of the com-
pact set Ly under F. Therefore, F(Ly) C S(A) for some A =
{zo,21,...,2,} € (Lx N D). Then, by Lemma, there exists an f €
C(An, X) such that f(A,) C TanLy =1 and f(Ay) C I for
each J € (A), where A, = co{eo,€1,...,€,} and Ay is the face of A,
corresponding to J. Let {\;}/L, be the partition of unity subordinated
to the cover {Sz; N Ff(A,)}l, of Ff(A,) C F(Ly).

For the remainder of the proof, we can just follow that of Case (i).
This completes our proof.

REMARKS. 1. Theorem 1 for Case (i) is a correct and generalized
form of Ding [Di, Theorem 3.3]. As in [Di}, Theorem 1 can be applied
to intersection theorems concerning sets with H-convex sections and
the von Neumann type minimax theorems.

2. Note that, if F is single-valued, the Hausdorffness assumption is
not necessary. See [P1, Theorem 6], [P2, Theorem 4].

PARTICULAR ForMS. 1. If (X, D;T) i1s a convex space with I'y =
coN for each N € (D), then Theorem 1 for Case (ii) includes Park
[P5, Theorem 5], which was shown to be equivalent to a number of
fundamental theorems in the KKM theory. For details, see [P5].

2. For H-spaces, Theorem 1 includes Horvath [H5, Theorem 4.2],
Ding, Kim, and Tan [DKT1, Corollaries 3-5], Ding and Tan [DT, The-
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orems 10-12 and Corollaries 2-4], Tarafdar [T, Theorem 2], Chen [Ch,
Theorem 2|, and Park [P1, Theorem €], [P2, Theorem 4].

b

3. If F is compact in Theorem 1, by putting F(X} = K, the coer-
civity condition (1.4) (ii) holds automatically. Therefore, we have the
following:

COROLLARY 1. Let (X, D;T) be an H-space, Y a Hausdorff space,
F e AX(X,Y) a compact map, and S : D —Y,T:X — Y. Suppose
that
(1) for each z € D, St is compactly open;
(2) foreachy e F(X), M € (S5 y) implies Tay C T™y; and
(3) F(X)cC S(D).
Then F and T have a coincidence point & € X; that is, Fxr NT% # 0.

REMARK. Condition (2) in Corollary 1 can be replaced by the fol-
lowing;:

(2)" for each ¢ € D, Sr C Tz and, for each y € F(X), Ty is
H-convex.

PARTICULAR FORMS. For H-spaces, Corollary 1 includes Horvath
(H1, Théoréme 4.1], [H2, Théoréme 2 ¢t Lemma 1], and [H3. Theorem
2'].

Moreover, from Corollary 1, we have

COROLLARY 2. Let (X, D:T') be an H-space, Y a Hausdorff space,
F e AN X,Y) compact, and G : X —o Y. Suppose that

(1) for each y € F(X), G~y is H-convex; and

(2) {Int Gz : z € D} covers F(X).

Then F and G have a coincidence point.

Proof. Put G =T and let S: D — Y be defined by Sr = Int Gz
for z € D in Corollary 1.

PARTICULAR FOorMS. If (X, D;T) is a convex space. then Corollary
2 reduces to Park [P35, Theorem 2]. For H-spaces, Corollary 2 includes
Horvath [H4, Corollaire 6] and Ding and Tarafdar [DTr, Theorem 3.1].
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4. The KKM theorems

In this section, we show that Theorem 1 is equivalent to the following
KKM type theorem:

THEOREM 2. Let (X,D;T') be an H-space, Y a Hausdorff space,
and F € A5(X,Y). Let G: D — Y be a map such that

(2.1) for each z € D, Gz is compactly closed inY;
(2.2) for each N € (D), F(I'n) C G(N); and
(2.3) there exists a nonempty compact subset K of Y such that
either
(i) M{Gz:2 € M} C K for some M € (D); or
(i1) for each N € (D), there exists a compact H-subspace Ly of
X containing N such that

F(Ln)N[{Gz:2e€LnnNnD}CK.

Then we have

FX)nKn(){Gz:z€ D} #0.

Proof. Let S: D oY, H:Y —o X,and T : X — Y be defined
by S = Y\Gz for z € D, Hy = Y{Tm : M € (S7y)} fory € Y,
and Tz = H™z for 2 € X. Then (1.1) and (1.2) hold by (2.1) and
the definitions of S and T. Suppose that F(X)N K N[({Gz : z €
D} = §; that is, F(X) N K C S(D), which is just (1.3). Note that
(2.3) is equivalent to (1.4). Therefore, by Theorem 1, T' and F have a
coincidence point € X; that is, FTNTZ # §. For y € Fza N Tz, we
have Z € T~y and hence, there exists an N < (S~y) C (D) such that
Te€ln.Sinceye F2C F(CN) CG(N)=Y\([\{Sz:z € N}, y ¢ Sz
for some z € N; that is, 2 ¢ S~y and @ € N, which is a contradiction.
This completes our proof.

Theorems 1 and 2 are equivalent:

Proof of Theorem 1 using Theorem 2. Let Gz = Y'\Sz for z € D.
Then (2.1) and (2.3) follow from (1.1) and (1.4), respectively. More-

over, from (1.3), we have

F(X)nK c S(D)= | J(¥\Gx) =Y\ [ Gz,
€D reD
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contrary to the conclusion of Theorem 2. Therefore, F and G does not
satisfy (2.2) and hence, thereexist an N € (D) anday € F(I'y)\G(N);
that is, y ¢ Gz or y € Sz for all z € N. Since N € (57 y) C (D), we
have 'y C Ty by (1.2). Since y € F(I'n), there exists an 7 € 'y
such that y € Fz. Note that z € I'y € T y; that is, y € Tx. This
completes our proof.

PARTICULAR FoRrMs. 1. If (X, D;T) is a convex space, then The-
orem 2 reduces to Park [P5, Theorem 7] which includes many known
generalizations of the KKM theorem.

2. For H-spaces, Theorem 2 generalizes Horvath [H1, Théoréme 3.1
et Corollaire 3], [H3, I, Theorem 1 and Corollary 1], Bardaro and Cep-
pitelli [BC1, Theorem 1], Ding and Tan [DT, Corollary 1 and Theorem
8], Ding, Kim, and Tan [DKT1, Lemma 1}, and Park [P1, Theorems 1
and 4], [P2, Theorem 1].

REMARKS. 1. If (X,D;T) is a convex space with I'y = co A4 for
A € (D), then (i) implies (i1). In fact, we can choose L)y = co(MUN).

2. Ding [Di, Theorem 3.2] claimed that Theorem 2 for Case (ii)
holds for a compact-valued u.s.c. map F and

(2.2) for each N € (D), I'n € F~G(N)

instead of (2.2). However, this is false as the following example shows:

EXAMPLE. Let X =Y = K = [0,1], D = {0,1}, and 'y = coN
for N € (D). Let Ga = {z} forz € D and Fz = [0,1} for z € X. Then
(MGz :z € D} = 0 and for each N € (D), coN C F~G(N) =1[0,1].

5. Fixed point theorems

Our main coincidence theorem can be applied to some fixed point
problems for the class 2.

THEOREM 3. Let (X, D;T') be an H-space such tha: X has a Haus-
dorff uniform structure and F' € A.(X,X) a compact map. Suppose
that, for each entourage V of X, there exist maps S : D —o X and
T : X —o X satisfying (1)-(3) in Corollary 1 and Gr(F )N Gr(T) C V.
Then F has a fixed point.

Proof. For each entourage V of the Hausdorff uniformity, by Corol-
lary 1, there exist a map T : X — X and a point (zy .yv) such that
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(zv,yv) € Gr(F)N Gr(T) C V. Therefore, F has a V-fixed point.
Since F(X) is compact and F is u.s.c., F must have a fixed point.

PARTICULAR FORMS. See Horvath [H5, Theorem 4.4] and Park [P3,
Theorem 5].

For metric spaces, we have the following from Theorem 3:

THEOREM 4. Let (X, D;T') be a metric H-space with the metric d,
and F € A.(X,X) a compact map. Suppose that

(4.1) every open ball in X is H-convex; and

(4.2) D is dense in F(X).
Then F has a fixed point.

Proof. Note that X is a Hausdorff uniform space. For any ¢ > 0 and
an entourage Ve = {(z,y) € X x X : d(z,y) <€}, define S: D — X
and T: X — X by

Sz =B(z,e)={ye X : da,y)<¢} for z€ D,

and
Tz = B(zr,e) for zeX.

Note that S¢ = Tz for z € D and Sz is open in X. Moreover, for each
yeX,
T7y= {JI €X :ye B(T,E)} = B(y,e)

is H-convex. Furthermore, F(X) C S(D) by (4.2). Note that
Gr(T) = {(z,y) €« X x X : d(z,y) <e} = V..

Therefore, by Theorem 3, F has a fixed point.

PARTICULAR FORMS. 1. For 2 = C, Theorem 4 extends Brouwer
[Br], Schauder [Sc], Rassias [R], and Park [P3, Theorems 3 and 6]. For
details, see [P3].

2. For /A = K, Theorem 4 extends Kakutani [Ka] and Bohnenblust
and Karlin [BK].
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6. Open-valued KKM theorems and coincidence theorems

In order to obtain the open version of Theorem 2 for the class 2.,
we need the following:

THEOREM 5. Let (X, D;T") be an H-space, D = {zg, 21, ,an} €
(X),Y aregular space, G: D — Y a map, and F : X — Y a compact
valued u.s.c. map. If G : D — Y is a open valued map such that

(56.1) for each J € (D), F(T';) C G(J).

Then there is a closed valued map H : D —o Y such that Hz C Gz
for all x € D and

(5.2) Ff(Ay) C H(J) for each J € (D) and f : A, — I'p in

Lemma, where A is the face of A, correspording to J.
Proof. For any y € G(D), let
H, = ﬂ{Ga' ty € Grl;

then H, is an open set in Y containing y. By the regurality of 17, there
exists an open neighborhood U, of y in Y such that

yeU, cU, C Hy.
Clearly for any J € (D), we have
G(J)={Uy:y € G(J)}
and so by (5.1), I {U, : y € G(J)} is an open cover of F f(Ay), since
Ff(Ay) C F(Ty).
Since F f(A ) is compact, there exists a By € (G(J)) such that

Ffiay) | J{U, sy € By},
Let B=J{B,:J € (D)}. Define H: D -0 Y by

Hm:U{U—y—:yE BN Gz}

for each z € D. Then Hz is closed in Y for each x € D' and Ha C Gz,
since U, C H, C Gzify € Gz. Andforeach J € (D)and z € Ff(Ay),
we have z € Uy for some y € By C GiJ)N B; that is y € Gz N B for
some z € J, hence

FfA) c H{J).

This completes our proof.
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REMARK. The proof was motivated by Shih [Sh, Theorem 1].

THEOREM 6. Let (X,D;T) be an H-space, D = {zg,z1, - ,2,} €
(X), Y a Ty regular space, G: D — Y amap, and F € A(X,Y).
Suppose that

(6.1) for each z € D, Gx is open in Y; and
(6.2) for each N € (D), F(Tn) C G(N).

Then F(T'p)N({Gz :z € D} # 0.

Proof. Suppose that F(I'p) N ({Gz : z € D} = 0. By Theorem
5, there exists a map H : D — Y such that Hx C Gz for each
z € D and (5.2) holds, and so F(Cp)N(W{Hz : z € D} = 0. Then
Ff(An) CT(D) =Y, where Tz = Y\Hz for each z € D. Let {\;}1,
be the partition of unity subordinate to this cover {Tz;}7, of compact

subset Ff(A,) of Y. Define p: Ff(A,) — A, by

Py = Xilylei= D Aly)e;
1=0

1EN,

fory € Ff(Ay) where i € Ny <> A\i(y) # 0 => y € Tx;.

By Lemma, pFf € A,(An,A,) has a fixed point z9 € Ap; that is
20 € pF fz9. So there is a yo € Ffz such that pyo = zp and yy € Fxy
where zo = fz0. If i € N, then yo € Tz;, and

Yo € Fzo N[ W{Txi1i € Ny} #0.

Put M = {x;:1 € Ny}, then Ff(Ap)N[{Tz:2z € M} # 0; that is,
Ff(Am) ¢ H(M), where Ay is the face of A, corresponding to M.
This contradicts (5.2). This completes our proof.

REMARKS. 1. In the proof of Theorem 6. we actually showed the
following;:

Let X be a topological space, f : A,, — .X a continuous function,
and Y, D, F and G be the same as in Theorem 6. Suppose that (6.1)
and
(6.2)' for each N C D, Ff(An) C G(N).

Then Ff(A,) NGz :x € D} #0.

2. If F is a continuous single-valued map, then the Ty regularity of

Y is not necessary. See Park [P1, Theorem 14].
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PARTICULAR FORMS. For convex spaces, Theorem 6 extends W.K.
Kim [Kil-2], Lassonde [L2, Theorem 1], and Park [P4. Theorem 10)].

By the same argument to that of Theorems 1 and 2, we can show
that Theorem 6 is equivalent to the following:

THEOREM 7. Let (X, D;T') be an H-space, D € (X, Y a T regular
space, and F € A.(X,Y). Let S: D oY and T : X — Y satisfy the
following:

(7.1) for each z € D, Sz is closed in Y;
(7.2) for eachy € F(X), M € (S™y) implies T'ps C T y; and
(7.3) F(I'p) C S(D).

Then T and F have a coincidence point ¥ € X; that is, Tt N FZ # §.
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