• Title/Summary/Keyword: Kaehlerian manifold.

Search Result 37, Processing Time 0.019 seconds

SLANT SUBMANIFOLDS OF AN ALMOST PRODUCT RIEMANNIAN MANIFOLD

  • Sahin Bayram
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.717-732
    • /
    • 2006
  • In this paper, we study both slant 3nd semi-slant sub-manifolds of an almost product Riemannian manifold. We give characterization theorems for slant and semi-slant submanifolds and investigate special class of slant submanifolds which are product version of Kaehlerian slant submanifold. We also obtain integrability conditions for the distributions which are involved in the definition of a semi-slant submanifold. Finally, we prove a theorem on the geometry of leaves of distributions under a condition.

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

On real hypersurfaces of a complex hyperbolic space

  • Kang, Eun-Hee;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.173-184
    • /
    • 1997
  • An n-dimensional complex space form $M_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c. As is well known, complete and simply connected complex space forms are a complex projective space $P_n C$, a complex Euclidean space $C_n$ or a complex hyperbolic space $H_n C$ according as c > 0, c = 0 or c < 0.

  • PDF

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

CRITICAL METRICS ON NEARLY KAEHLERIAN MANIFOLDS

  • Pak, Jin-Suk;Yoo, Hwal-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.9-13
    • /
    • 1992
  • In this paper, we consider the function related with almost hermitian structure on a copact complex manifold. More precisely, on a 2n-diminsional complex manifold M admitting 2-form .ohm. of rank 2n everywhere, assume that M admits a metric g such that g(JX, JY)=g(X,Y), that is, assume that g defines an hermitian structure on M admitting .ohm. as fundamental 2-form-the 'almost complex structure' J being determined by g and .ohm.:g(X,Y)=.ohm.(X,JY). We consider the function I(g):=.int.$_{M}$ $N^{2}$d $V_{g}$, where N is the norm of Nijenhuis tensor N defined by (J,g). by (J,g).

  • PDF