• 제목/요약/키워드: Kaehler submanifolds

Search Result 35, Processing Time 0.02 seconds

KAEHLER SUBMANIFOLDS WITH RS=0 IN A COMPLEX PROJECTIVE SPACE

  • Hyun, Jong-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.685-690
    • /
    • 1997
  • Our study focuses on the condition under which a subspace of complex projective space can become an Einstein space. We prove that a subspace becomes an Einstein space if it's codimension is less than n-1 and its curvature tensor and Ricci tensor satisfies Ryan's condition.

  • PDF

NON-EXISTENCE OF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS ADMITTING NON-METRIC π-CONNECTIONS

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.539-547
    • /
    • 2014
  • In this paper, we study two types 1-lightlike submanifolds M, so called lightlike hypersurface and half lightlike submanifold, of an indefinite Kaehler manifold $\bar{M}$ admitting non-metric ${\pi}$-connection. We prove that there exist no such two types 1-lightlike submanifolds of an indefinite Kaehler manifold $\bar{M}$ admitting non-metric ${\pi}$-connections.

CLASSIFICATION OF TWISTED PRODUCT LIGHTLIKE SUBMANIFOLDS

  • Sangeet Kumar;Megha Pruthi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1003-1016
    • /
    • 2023
  • In this paper, we introduce the idea of twisted product lightlike submanifolds of semi-Riemannian manifolds and provide non-trivial examples of such lightlike submanifolds. Then, we prove the non-existence of proper isotropic or totally lightlike twisted product submanifolds of a semi-Riemannian manifold. We also show that for a twisted product lightlike submanifold of a semi-Riemannian manifold, the induced connection ∇ is not a metric connection. Further, we prove that a totally umbilical SCR-lightlike submanifold of an indefinite Kaehler manifold ${\tilde{M}}$ does not admit any twisted product SCR-lightlike submanifold of the type M×ϕMT, where M is a totally real submanifold and MT is a holomorphic submanifold of ${\tilde{M}}$. Consequently, we obtain a geometric inequality for the second fundamental form of twisted product SCR-lightlike submanifolds of the type MT×ϕM of an indefinite Kaehler manifold ${\tilde{M}}$, in terms of the gradient of ln ϕ, where ϕ stands for the twisting function. Subsequently, the equality case of this inequality is discussed. Finally, we construct a non-trivial example of a twisted product SCR-lightlike submanifold in an indefinite Kaehler manifold.

GEOMETRIC CHARACTERISTICS OF GENERIC LIGHTLIKE SUBMANIFOLDS

  • Jha, Nand Kishor;Pruthi, Megha;Kumar, Sangeet;Kaur, Jatinder
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.179-194
    • /
    • 2022
  • In the present study, we investigate generic lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving the existence of generic lightlike submanifolds in an indefinite generalized complex space form, a non-trivial example of this class of submanifolds is discussed. Then, we find a characterization theorem enabling the induced connection on a generic lightlike submanifold to be a metric connection. We also derive some conditions for the integrability of distributions defined on generic lightlike submanifolds. Further, we discuss the non-existence of mixed geodesic generic lightlike submanifolds in a generalized complex space form. Finally, we investigate totally umbilical generic lightlike submanifolds and minimal generic lightlike submanifolds of an indefinite nearly Kaehler manifold.

INTEGRABILITY OF DISTRIBUTIONS IN GCR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS

  • Kumar, Rakesh;Kumar, Sangeet;Nagaich, Rakesh Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.591-602
    • /
    • 2012
  • In present paper we establish conditions for the integrability of various distributions of GCR-lightlike submanifolds and obtain conditions for the distributions to define totally geodesic foliations in GCR-lightlike submanifolds.

SUBMAUFOLDS OF AN ALMOST QUATERNIONIC KAEHLER PRODUCT MANIFOLD

  • Kang, Tae-Ho;Nam, Hyo-Chang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.653-665
    • /
    • 1997
  • We define an almost quaternionic Kaehler product manifold and study its submanifolds. Moreover we construct the curvature tensor of the product manifold of two quaternionic forms.

  • PDF

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Lee, Jae Won;Lee, Chul Woo
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.621-643
    • /
    • 2020
  • Depending on the characteristic vector filed ζ, a generic lightlike submanifold M in an indefinite Kaehler manifold ${\bar{M}}$ with a semi-symmetric metric connection has various characterizations. In this paper, when the characteristic vector filed ζ belongs to the screen distribution S(TM) of M, we provide some characterizations of (Lie-) recurrent generic lightlike submanifold M in an indefinite Kaehler manifold ${\bar{M}}$ with a semi-symmetric metric connection. Moreover, we characterize various generic lightlike submanifolds in an indefinite complex space form ${\bar{M}}$ (c) with a semi-symmetric metric connection.

CR-WARPED PRODUCT SUBMANIFOLDS OF NEARLY KAEHLER MANIFOLDS

  • Al-Luhaibi, Nadia S.;Al-Solamy, Falleh R.;Khan, Viqar Azam
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-995
    • /
    • 2009
  • As warped product manifolds provide an excellent setting to model space time near black holes or bodies with large gravitational field, the study of these manifolds assumes significance in general. B. Y. Chen [4] initiated the study of CR-warped product submanifolds in a Kaehler manifold. He obtained a characterization for a CR-submanifold to be locally a CR-warped product and an estimate for the squared norm of the second fundamental form of CR-warped products in a complex space form (cf [6]). In the present paper, we have obtained a necessary and sufficient conditions in terms of the canonical structures P and F on a CR-submanifold of a nearly Kaehler manifold under which the submanifold reduces to a locally CR-warped product submanifold. Moreover, an estimate for the second fundamental form of the submanifold in a generalized complex space is obtained and thus extend the results of Chen to a more general setting.