DOI QR코드

DOI QR Code

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho (Department of Mathematics, Dongguk University)
  • Received : 2013.12.03
  • Accepted : 2014.04.02
  • Published : 2014.06.25

Abstract

In this paper, we study the geometry of half lightlike submanifolds of an indefinite Kaehler manifold equipped with a quarter-symmetric metric connection. The main result is to prove several classification theorems for such half lightlike submanifolds.

Keywords

References

  1. G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344. https://doi.org/10.1007/BF02564308
  2. K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Man- ifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  3. K.L. Duggal and D.H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ., 22 (1999), 121-161.
  4. K.L. Duggal and D.H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
  5. K.L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  6. S. Golab, On semi-symmetric and quarter-symmetric connections, Tensor, N.S., 29 (1975), 249-254.
  7. D.H. Jin, Screen conformal lightlike real hypersurfaces of an indefinite complex space form, Bull. Korean Math. Soc. 47(2) (2010), 341-353. https://doi.org/10.4134/BKMS.2010.47.2.341
  8. D.H. Jin, Geometry of screen conformal real half lightlike submanifolds, Bull. Korean Math. Soc. 47(4) (2010), 701-714. https://doi.org/10.4134/BKMS.2010.47.4.701
  9. D.H. Jin, Real half lightlike submanifolds with totally umbilical properties, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 17(1) (2010), 51-63.
  10. D.H. Jin, Real half lightlike submanifolds of an indefinite Kaehler manifold, Commun. Korean Math. Soc. 26(4) (2011), 635-647. https://doi.org/10.4134/CKMS.2011.26.4.635
  11. D. Kamilya and U.C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian, J. Pure and Appl. Math., 26 (1995), 29-34.
  12. R.S. Mishra and S.N. Pandey, On quarter-symmetric F-connections, Tensor, N.S. 34 (1980), 1-7.
  13. J. Nikic and N. Pusic, A remakable class of natural metric quarter-symmetric connection on a hyperbolic Kaehler space, Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 96-101, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.
  14. N. Pusic, On quarter-symmetric metric connections on a hyperbolic Kaehler space, Publ. de l' Inst. Math, 73(87) (2003), 73-80. https://doi.org/10.2298/PIM0373073P
  15. S.C. Rastogi, On quarter-symmetric metric connections, C.R. Acad Sci. Bulgar, 31 (1978), 811-814.
  16. S.C. Rastogi, On quarter-symmetric metric connections, Tensor, 44(2) (1987), 133-141.
  17. K. Yano and T. Imai, Quarter-symmwtric metric connection and their curvature tensors, Tensor, N.S., 38 (1982).