• Title/Summary/Keyword: KURF

Search Result 4, Processing Time 0.016 seconds

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

Blasting Impact by the Construction of an Underground Research Tunnel in KAERI (한국원자력연구소내 지하처분연구시설 건설에 따른 발파 영향)

  • Kwon Sang-Ki;Cho Won-Jin;Kim Deug-Su
    • Explosives and Blasting
    • /
    • v.23 no.4
    • /
    • pp.1-18
    • /
    • 2005
  • The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated in a granite rock by drill&blasting. In order not to disturb the operation at the research facilities including Hanara reactor by the blasting for the excavation of $6m{\times}6m$ tunnel, a test blasting at the site was performed. Using the vibration equation derived from the test blasting, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The noise and vibration generated by the main blasting were continuously measured. In the case of vibration, the measured values were lower than the predicted one from the vibration equation. It is, therefore, concluded that the influence of blasting work for the construction of 280m long research tunnel on the major facilities in KAERIl would be insignificant.