• Title/Summary/Keyword: KSU-온실모형

Search Result 4, Processing Time 0.018 seconds

Estimation of Surplus Solar Energy in Greenhouse (II) (온실내 잉여 태양에너지 산정(II))

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Hyeon-Tae;Km, Yong-Ju;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • This study is about an analysis of surplus solar energy by important greenhouse type using Typical Meteorological Year (TMY) data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generated in greenhouses during the daytime. The 07-auto-1 and 08-auto-1 types showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~29.0% regardless of greenhouse type. About 54.0~225.0% and 53.0~218.0% of required heating energy will be able to be supplemented respectively according to the greenhouse types. The 07-mono-1 and 07-mono-3 types also showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~26.0% and 21.0~27.0% respectively by greenhouse type. About 57.0~211.0% and 62.0~228.0% of required heating energy will be able to be supplemented by greenhouse type. Except for Daegwallyeong and Suwon area, other regions can cover heating energy only by surplus solar energy, according to the study.

Analysis of Surplus Solar Energy in Greenhouse Based on Setting Temperature (설정온도별 온실내 잉여 태양에너지 분석)

  • Yoon, Yong-Cheol;Kown, Sun-Ju;Kim, Hyeon-Tae;kim, Young-Joo;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.195-206
    • /
    • 2012
  • This study is about an analysis of surplus solar energy by important greenhouse types as well as setting temperature different by using Typical Meteorological Year data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generating in greenhouses during the daytime. Depending on the setting temperatures of $15{\sim}19^{\circ}C$ for greenhouse heating during day and night, surplus heat amounts were varied at the rate of about $0.2{\sim}6.9%/4^{\circ}C$ with some variations according to the greenhouse types and regions. On the other hand, the variations of supplemental heat requirements were about $29.7{\sim}50.0%/4^{\circ}C$. Depending on the setting temperatures for greenhouse ventilations(low $25{\sim}29^{\circ}C$ and high $27{\sim}31^{\circ}C$), surplus heat amounts were varied at the rate of about $-9.9{\sim}-35.6%/4^{\circ}C$ in auto-type greenhouse. But in single-type greenhouses, they were about $-5.1{\sim}-13.4%/4^{\circ}C$. There were not significant changes in supplemental heat amounts depending on setting temperatures of ventilation for both greenhouse types and regions.

Estimation of Surplus Solar Energy in Greenhouse Based on Region (지역별 온실내의 잉여 태양에너지 산정)

  • Yoon, Yong-Cheol;Im, Jae-Un;Kim, Hyeon-Tae;Kim, Young-Joo;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.135-141
    • /
    • 2011
  • This research was conducted to provide basic data of surplus heat for designing solar heat-storage systems. The surplus heat is defined as the heat exhausted by forced ventilations from the greenhouses to control the greenhouse temperature within setting limits. Various simulations were performed to compare the differences of thermal behaviors among greenhouse types as well as among several domestic areas by using pseudo-TMY (Typical Meteorological Year) data manipulated based both on the weather data supplied from Korean Meteorological Administration and the TMY data supplied from The Korean Solar Energy Society. Additional analyses were carried out to examine the required heating energy together with some others such as the energy balances in greenhouses to be considered. The results of those researches are summarized as follows. Regional surplus solar heats for the nine regions with 4-type were analyzed. The results showed that the ratio of surplus solar energy compared to heating energy was the highest in Jeju (about 212.0~228.0%) for each greenhouse type. And followed by Busan, Kwangju, Jinju, Daegu, Daejeon, Jeonju, Suwon and Daekwanryung. And irrespective of greenhouse types, surplus solar energy alone could cover up nearly all of the required supplemental heating energy except for a few areas.

Analysis of Surplus Solar Energy in Venlo Type Greenhouse (벤로형 온실의 잉여 태양에너지 분석)

  • Choi, Man Kwon;Shin, Yik Soo;Yun, Sung Wook;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • This research analyzed surplus solar energy in Venlo-type greenhouse using acquired typical meteorological year (TMY) data for designing a heat storage system for the surplus solar energy generated in the greenhouse during the day. In the case of paprika, the region-dependent heating loads for Jeju, Jinju, and Daegwanryong area were approximately 1,107.8 GJ, 1,010.0 GJ, and 3,118.5 GJ, respectively. The surplus solar energy measured in Jeju area was 1,845.4 GJ, Jinju area 1,881.8 GJ, and Daegwanryong area 2,061.8 GJ, with the Daegwanryong area showing 11.7% and 9.6% higher than the Jeju region and Jinju region respectively. In the case of chrysanthemums, regional heating loads were determined as 1,202.5 GJ for the Jeju region, 1,042.0 GJ for the Jinju region, and 3,288.6 GJ for the Daegwanryong region; the regional differences were similar to those for paprika. The recorded surplus solar energy was 1,435.2 GJ, 1,536.2 GJ, and 1,734.6 GJ for Jeju, Jinju, and Daegwanryong region, respectively. The Daegwanryong region recorded heating loads 20.9% and 12.9% higher than in the Jeju and Jinju region, respectively. From the above, it can be said that cultivating paprika, compared to cultivating chrysanthemums, requires less heating energy regardless of the region and tends to yield more surplus solar energy. Moreover, if the Daekwan Pass region is excluded, the surplus solar energy exceeds the energy required for heating. Although the required heating energy differs according to regions and crops, cucumbers were found to require the highest amount, followed by chrysanthemum and paprika. The amount of surplus solar energy was the highest in the case of paprika, followed by cucumber and chrysanthemum.