DOI QR코드

DOI QR Code

Analysis of Surplus Solar Energy in Venlo Type Greenhouse

벤로형 온실의 잉여 태양에너지 분석

  • Choi, Man Kwon (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Shin, Yik Soo (Graduate School, Gyeongsang National Univ.) ;
  • Yun, Sung Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kim, Hyeon Tae (Dept. of Bio-Industrial Machinery Eng., Gyeongsang National Univ. (Institute of Agriculture and Life Science)) ;
  • Yoon, Yong Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ. (Institute of Agriculture and Life Science, GNU))
  • 최만권 (경상대학교대학원) ;
  • 신익수 (경상대학교 농업생명과학연구원) ;
  • 윤성욱 (경상대학교대학원) ;
  • 김현태 (생물산업기계공학과(농업생명과학연구원)) ;
  • 윤용철 (경상대학교지역환경기반공학과(농업생명과학연구원))
  • Received : 2013.03.27
  • Accepted : 2013.05.03
  • Published : 2013.06.30

Abstract

This research analyzed surplus solar energy in Venlo-type greenhouse using acquired typical meteorological year (TMY) data for designing a heat storage system for the surplus solar energy generated in the greenhouse during the day. In the case of paprika, the region-dependent heating loads for Jeju, Jinju, and Daegwanryong area were approximately 1,107.8 GJ, 1,010.0 GJ, and 3,118.5 GJ, respectively. The surplus solar energy measured in Jeju area was 1,845.4 GJ, Jinju area 1,881.8 GJ, and Daegwanryong area 2,061.8 GJ, with the Daegwanryong area showing 11.7% and 9.6% higher than the Jeju region and Jinju region respectively. In the case of chrysanthemums, regional heating loads were determined as 1,202.5 GJ for the Jeju region, 1,042.0 GJ for the Jinju region, and 3,288.6 GJ for the Daegwanryong region; the regional differences were similar to those for paprika. The recorded surplus solar energy was 1,435.2 GJ, 1,536.2 GJ, and 1,734.6 GJ for Jeju, Jinju, and Daegwanryong region, respectively. The Daegwanryong region recorded heating loads 20.9% and 12.9% higher than in the Jeju and Jinju region, respectively. From the above, it can be said that cultivating paprika, compared to cultivating chrysanthemums, requires less heating energy regardless of the region and tends to yield more surplus solar energy. Moreover, if the Daekwan Pass region is excluded, the surplus solar energy exceeds the energy required for heating. Although the required heating energy differs according to regions and crops, cucumbers were found to require the highest amount, followed by chrysanthemum and paprika. The amount of surplus solar energy was the highest in the case of paprika, followed by cucumber and chrysanthemum.

본 연구는 주간동안 온실 내에서 발생되는 잉여 태양에너지 축열 시스템 설계에 필요한 기초자료를 제공할 목적으로 확보한 표준기상년 데이터를 이용하여 벤로형 온실을 대상으로 잉여 태양에너지를 분석하였다. 파프리카의 경우, 지역별 난방부하는 제주, 진주 및 대관령지역에 대해 각각 약 1,107.8GJ, 1,010.0GJ 및 3,118.5GJ로 분석되었다. 잉여 태양에너지의 경우, 제주지역 1,845.4GJ, 진주지역 1,881.8GJ, 대관령지역은 2,061.8GJ로 나타나 대관령지역이 제주 및 진주지역에 비해 각각 11.7% 및 9.6% 정도 크게 나타났다. 국화의 경우, 지역별 난방부하는 제주지역 1,202.5GJ, 진주지역 1,042.0GJ, 대관령지역은 3,288.6GJ 정도인 것으로 분석되었으며 지역별 차이는 파프리카의 경우와 유사였다. 잉여 태양에너지는 제주, 진주 및 대관령지역에 대해 각각 1,435.2GJ, 1,536.2GJ, 및 1,734.6GJ로 나타나 대관령 지역이 제주 및 진주지역에 비해 각각 20.9% 및 12.9% 정도 크게 나타났다. 파프리카를 재배하는 경우가 국화에 비해 상대적으로 지역에 관계없이 난방에너지가 차지하는 비중은 적고 잉여 태양에너지는 많은 경향이 있음을 알 수 있다. 또한 대관령지역을 제외하면 잉여 태양에너지가 난방에 소요되는 에너지보다 많은 것을 알 수 있다. 소요 난방에너지는 지역 및 재배작물별로 다소 차이는 있지만, 오이가 일반적으로 많게 나타났으며, 그 다음으로 국화 및 파프리카 순이었다. 잉여 태양에너지는 대체적으로 파프리카, 오이 및 국화 순으로 많게 나타났다.

Keywords

References

  1. http://www.postharvest.or.kr. Korea Meteorological Administration (KMA). 2008. Analysis report of meteorological source for optimum utilization of solar energy. Seoul, Korea.
  2. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2012a. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2011. Gwacheon, Korea.
  3. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2012b. Cultivation status of floricultural crop in 2011. Gwacheon, Korea.
  4. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF), Rural Development Administration (RDA). 2007. Designated notice of standards to endure disaster for horticultural and special facilities. Gwacheon and Suwon, Korea.
  5. Nam, S.W. and D.S. Kim. 2008. A study on application of new & renewable energy for environmental friendly planning of rural villages. J. KSAE. 50(3):105-112 (in Korean).
  6. Park, H.S. 2011. Casting plan for rationalization of energy use in the agriculture and fishery. Proceedings of the KSBEC 2011 spring conference and symposium. Korean Society for Bio-Env. Con. 20(1):28-38 (in Korean).
  7. Suh, W.M., Y.H. Bae, Y.S. Ryou, S.H. Lee, H.Y. Kim, Y.J. Kim, and Y.C. Yoon. 2011. Estimation of surplus solar energy in greenhouse (II). J. Bio-Env. Con. 20(2):83-92 (in Korean).
  8. Suh, W.M., B.Y. Han, Y.S. Ryou, S.H. Lee, and Y.C. Yoon. 2009. Estimation of surplus solar energy in greenhouse (I) - case study based on 1-2W type-. J. KSAE 51(5):79-86 (in Korean).
  9. Suh, W.M. 1986. Modeling of a greenhouse equipped with a solar rockbed system and with carbon dioxide enrichment. Ph.D. diss., Manhattan: Kansas State University.
  10. Yoon, Y.C., S.J. Kown, H.T. Kim, and W.M. Suh. 2012. Analysis of surplus solar energy in greenhouse based on Setting Temperature. J. Agric. Life Sci. 46(1):195-206 (in Korean).
  11. Yoon, Y.C., J.U. Im, H.T. Kim, Y.J. Kim, and W.M. Suh. 2011. Estimation of surplus solar energy in greenhouse based on Region. J. Agric. Life Sci. 45(4):135-141 (in Korean).
  12. Yoon, Y.C., Y.H. Bae, Y.S. Ryou, S.H. Lee, and W.M. Suh. 2009. Power generating performance of photovoltaic power system for greenhouse equipment operation. J. Bio-Env. Con. 18(3):177-184 (in Korean).