Estimation of Surplus Solar Energy in Greenhouse Based on Region

지역별 온실내의 잉여 태양에너지 산정

  • Yoon, Yong-Cheol (Dept. of Agricultural Eng., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Im, Jae-Un (Graduate School, Gyeongsang National Univ.) ;
  • Kim, Hyeon-Tae (Dept. of Bio-Industrial Machinery Eng., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Kim, Young-Joo (Dept. of Agricultural Eng., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Suh, Won-Myung (Dept. of Agricultural Eng., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 임재운 (경상대학교 대학원) ;
  • 김현태 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 김영주 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 서원명 (경상대학교 지역환경기반공학과(농업생명과학연구원))
  • Received : 2011.05.04
  • Accepted : 2011.08.25
  • Published : 2011.08.31

Abstract

This research was conducted to provide basic data of surplus heat for designing solar heat-storage systems. The surplus heat is defined as the heat exhausted by forced ventilations from the greenhouses to control the greenhouse temperature within setting limits. Various simulations were performed to compare the differences of thermal behaviors among greenhouse types as well as among several domestic areas by using pseudo-TMY (Typical Meteorological Year) data manipulated based both on the weather data supplied from Korean Meteorological Administration and the TMY data supplied from The Korean Solar Energy Society. Additional analyses were carried out to examine the required heating energy together with some others such as the energy balances in greenhouses to be considered. The results of those researches are summarized as follows. Regional surplus solar heats for the nine regions with 4-type were analyzed. The results showed that the ratio of surplus solar energy compared to heating energy was the highest in Jeju (about 212.0~228.0%) for each greenhouse type. And followed by Busan, Kwangju, Jinju, Daegu, Daejeon, Jeonju, Suwon and Daekwanryung. And irrespective of greenhouse types, surplus solar energy alone could cover up nearly all of the required supplemental heating energy except for a few areas.

본 연구에서는 주간동안 온실 내에서 발생되는 잉여 태양에너지를 분석하고, 또한 잉여 태양에너지의 적정 축열 시스템 설계에 필요한 기초자료를 제공할 목적으로 수행하였다. 분석에 이용된 기상자료는 표준기상년 데이터로서 이용하여 국내 주요 지역을 대상으로 온실 형태별로 잉여 태양에너지를 분석하였을 뿐만 아니라 소요 난방에너지 등도 분석 및 검토하였다. 이상의 결과를 요약하면 다음과 같다. 9개 지역을 대상으로 지역별 잉여 태양에너지를 대해 분석한 결과, 난방에너지 대비 잉여 태양에너지 비율은 온실 형태별로 각각 약 212.0~228.0%로서 제주가 가장 높게 나타났다. 그 다음으로 부산, 광주, 진주, 대구, 대전, 전주, 수원, 및 대관령 순으로 나타났다. 그리고 온실 형태에 관계없이 몇 몇 지역을 제외하면 잉여 태양에너지만으로 소요 난방에너지를 거의 대체할 수 있을 것으로 판단되었다.

Keywords

References

  1. Department of Agricultural Engineering. 2008. Guide book of energy down to tide over of high oil price. Suwon, Korea.
  2. http://www.mke.go.kr
  3. Kim, H. Y. and J. J. Yee. 2007. Preparation the standard weather data and TAC map for heating and cooling load calculation in the 17-provinces of Korea. Architectural Institute of Korea 23: 197-204.
  4. Ministry for Food, Agriculture, Forestry and Fisheries. 2010a. Production results of vegetable crop in 2009. 52-64.
  5. Ministry for Food, Agriculture, Forestry and Fisheries. 2010b. Cultural state of floricultural crop in 2009. 3-13.
  6. Rural Development Administration. 2008. Technology of operating cost down for agriculture. Suwon, Korea.
  7. Suh, W. M., B. Y. Han, Y. S. Ryou, S. H. Lee, and Y. C. Yoon. 2009. Estimation of surplus solar energy in greenhouse(I) -case study based on 1-2W type-. J. KSAE 51: 79-86.
  8. Suh, W. M., 1986. Modeling of a greenhouse equipped with a solar rockbed system and with carbon dioxide enrichment. Ph.D. diss., Manhattan: Kansas State University.
  9. DACOIRI(데이코산업연구소). 2008. 태양광 시장의 실태와 전망.