• Title/Summary/Keyword: KOSPI 200 Stock Price Index

Search Result 38, Processing Time 0.023 seconds

The Intraday Lead-Lag Relationships between the Stock Index and the Stock Index Futures Market in Korea and China (한국과 중국의 현물시장과 주가지수선물시장간의 선-후행관계에 관한 연구)

  • Seo, Sang-Gu
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.189-207
    • /
    • 2013
  • Using high-frequency data for 2 years, this study investigates intraday lead-lag relationship between stock index and stock index futures markets in Korea and China. We found that there are some differences in price discovery and volatility transmission between Korea and China after the stock index futures markets was introduced. Following Stoll-Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the two markets by Newey-West's(1987) heteroskedasticity and autocorrelation consistent covariance matrix(HAC matrix). Empirical results of KOSPI 200 shows that the futures market leads the cash market and weak evidence that the cash market leads the futures market. New market information disseminates in the futures market before the stock market with index arbitrageurs then stepping in quickly to bring the cost-of-carry relation back into alignment. The regression tests for the conditional volatility which is estimated using EGARCH model do not show that there is a clear pattern of the futures market leading the stock market in terms of the volatility even though controlling nonsynchronous trading effects. This implies that information in price innovations that originate in the futures market is transmitted to the volatility of the cash market. Empirical results of CSI 300 shows that the cash market is found to play a more dominant role in the price discovery process after the Chinese index started a sharp decline immediately after the stock index futures were introduced. The new stock index futures markets does not function well in its price discovery performance at its infancy stage, apparently due to high barriers to entry into this emerging futures markets. Based on EGAECH model, the results uncover strong bi-directional dependence in the intraday volatility of both markets.

  • PDF

A Study on the Long-Run Equilibrium Between KOSPI 200 Index Spot Market and Futures Market (분수공적분을 이용한 KOSPI200지수의 현.선물 장기균형관계검정)

  • Kim, Tae-Hyuk;Lim, Soon-Young;Park, Kap-Je
    • The Korean Journal of Financial Management
    • /
    • v.25 no.3
    • /
    • pp.111-130
    • /
    • 2008
  • This paper compares long term equilibrium relation of KOSPI 200 which is underling stock and its futures by using general method fractional cointegration instead of existing integer cointegration. Existence of integer cointegration between two price time series gives much wider information about long term equilibrium relation. These details grasp long term equilibrium relation of two price time series as well as reverting velocity to equilibrium by observing difference coefficient of error term when it renounces from equilibrium relation. The result of this study reveals existence of long term equilibrium relation between KOSPI200 and futures which follow fractional cointegration. Difference coefficient, d, of 'two price time series error term' satisfies 0 < d < 1/2 beside bandwidth parameter, m(173). It means two price time series follow stationary long memory process. This also means impulse effects to balance price of two price time series decrease gently within hyperbolic rate decay. It indicates reverting speed of error term is very low when it bolts from equilibrium. It implies to market maker, who is willing to make excess return with arbitrage trading and hedging risk using underling stock, how invest strategy should be changed. It also insinuates that information transition between KOSPI 200 Index market and futures market does not working efficiently.

  • PDF

A Study on Developing a Profitable Intra-day Trading System for KOSPI 200 Index Futures Using the US Stock Market Information Spillover Effect

  • Kim, Sun-Woong;Choi, Heung-Sik;Lee, Byoung-Hwa
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.3
    • /
    • pp.151-162
    • /
    • 2010
  • Recent developments in financial market liberalization and information technology are accelerating the interdependence of national stock markets. This study explores the information spillover effect of the US stock market on the overnight and daytime returns of the Korean stock market. We develop a profitable intra-day trading strategy based on the information spillover effect. Our study provides several important conclusions. First, an information spillover effect still exists from the overnight US stock market to the current Korean stock market. Second, Korean investors overreact to both good and bad news overnight from the US. Therefore, there are significant price reversals in the KOSPI 200 index futures prices from market open to market close. Third, the overreaction effect is different between weekdays and weekends. Finally, the suggested intra-day trading system based on the documented overreaction hypothesis is profitable.

  • PDF

An Empirical Study on the Volume and Return in the Korean Stock Index Futures Markets by Trader Types (투자주체별 주가지수선물시장의 거래량과 수익률에 관한 연구)

  • Lee, Sang-Jae
    • 한국산학경영학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.107-120
    • /
    • 2006
  • This thesis examines the relationship between the trading volume and price return in the korean stock Index Futures until June 2005. First, the volume of KOSPI200 futures doesn't play a primary role with the clear explanation of return model. Second, an unexpected volume shocks are negatively associated with the return in case of the KOSPI200 futures, but it is a meaningless relation in the KOSDAQ50 futures. In the case of open interest, it's difficult to find any mean in a both futures. Third, The changes in the trading volumes by foreign investors are positively associated with the return and the volatility, but individuals and domestic commercial investors are negatively associated with the return. This empirical result seems that foreign investors are initiatively trading the korean stock index futures, individuals and domestic commercial investors follow the lead made by foreign investors.

  • PDF

A hidden Markov model for predicting global stock market index (은닉 마르코프 모델을 이용한 국가별 주가지수 예측)

  • Kang, Hajin;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.461-475
    • /
    • 2021
  • Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.

Analysis of the margin level in the KOSPI200 futures market (KOSPI200 선물 시장의 증거금 수준에 대한 연구)

  • Kim, Jun;Choe, In-Chan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.734-737
    • /
    • 2004
  • When the margin level is set relatively low, margin violation probability increases and the default probability of the futures market rises. On the other hand, if the margin level is set high, the margin violation probability decreases, but the futures market becomes less attractive to hedgers as the investor's opportunity cost increases. In this paper, we investigate whether the movement of KOSPI200(Korea Composite Stock Price Index 200) futures daily prices can be modeled with the extreme value theory. Base on this investigation, we examine the validity of the margin level set by the extreme value theory. Computational results are presented to compare the extreme value distribution and the empirical distribution of margin violation in KOSPI200. Some observations and implications drawn from the computational experiment are also discussed.

  • PDF

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

Using Data Mining Techniques for Analysis of the Impacts of COVID-19 Pandemic on the Domestic Stock Prices: Focusing on Healthcare Industry (데이터 마이닝 기법을 통한 COVID-19 팬데믹의 국내 주가 영향 분석: 헬스케어산업을 중심으로)

  • Kim, Deok Hyun;Yoo, Dong Hee;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.21-45
    • /
    • 2021
  • Purpose This paper analyzed the impacts of domestic stock market by a global pandemic such as COVID-19. We investigated how the overall pattern of the stock market changed due to the impact of the COVID-19 pandemic. In particular, we analyzed in depth the pattern of stock price, as well, tried to find what factors affect on stock market index(KOSPI) in the healthcare industry due to the COVID-19 pandemic. Design/methodology/approach We built a data warehouse from the databases in various industrial and economic fields to analyze the changes in the KOSPI due to COVID-19, particularly, the changes in the healthcare industry centered on bio-medicine. We collected daily stock price data of the KOSPI centered on the KOSPI-200 about two years before and one year after the outbreak of COVID-19. In addition, we also collected various news related to COVID-19 from the stock market by applying text mining techniques. We designed four experimental data sets to develop decision tree-based prediction models. Findings All prediction models from the four data sets showed the significant predictive power with explainable decision tree models. In addition, we derived significant 10 to 14 decision rules for each prediction model. The experimental results showed that the decision rules were enough to explain the domestic healthcare stock market patterns for before and after COVID-19.

Developing Pairs Trading Rules for Arbitrage Investment Strategy based on the Price Ratios of Stock Index Futures (주가지수 선물의 가격 비율에 기반한 차익거래 투자전략을 위한 페어트레이딩 규칙 개발)

  • Kim, Young-Min;Kim, Jungsu;Lee, Suk-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.202-211
    • /
    • 2014
  • Pairs trading is a type of arbitrage investment strategy that buys an underpriced security and simultaneously sells an overpriced security. Since the 1980s, investors have recognized pairs trading as a promising arbitrage strategy that pursues absolute returns rather than relative profits. Thus, individual and institutional traders, as well as hedge fund traders in the financial markets, have an interest in developing a pairs trading strategy. This study proposes pairs trading rules (PTRs) created from a price ratio between securities (i.e., stock index futures) using rough set analysis. The price ratio involves calculating the closing price of one security and dividing it by the closing price of another security and generating Buy or Sell signals according to whether the ratio is increasing or decreasing. In this empirical study, we generate PTRs through rough set analysis applied to various technical indicators derived from the price ratio between KOSPI 200 and S&P 500 index futures. The proposed trading rules for pairs trading indicate high profits in the futures market.

An Empirical Study on the Validity of the Availability Huristics and Anchoring Huristics in the Korean Stock Market (한국주식시장에서 가용성 어림짐작과 닻내림 어림짐작의 유효성에 관한 실증연구)

  • Sam-Ho Son;Jeong-Hwan Lee;Se-Jun Lee
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.1
    • /
    • pp.265-279
    • /
    • 2023
  • Purpose - The purpose of this paper is to compare and review behavioral economics models that explain stock price changes after large-scale price shocks in the Korean stock market and to find a suitable model. In this paper, among the theories reviewed, it was confirmed that the anchoring heuristics theory has high explanatory power for stock prices after large-scale stock price fluctuations. Design/methodology/approach - This paper conducts an event study on stock price shocks in which the individual stocks that make up the KOSPI200 index show more than 10% fluctuation on a daily basis. In order to materialize the abstract predictions of heuristics theories in a varifiable form, this paper uses the daily stock price index change as a reference point for availability heuristics, and uses the 52-week highest and lowest price as reference point for anchoring heuristics. Research implications or Originality - As a result of the empirical analysis, the stock price reversals did not consistently appear for changes in the daily index. On the other hand, the stock price drifts consistently appeared around the 52-week highest and the 52-week lowest price. And in the multiple regression analysis that controlled for company-specific and event-specific variables, the results that supported the anchoring heuristics were more evident. These results suggest that it is possible to establish an investment strategy using large-scale price change in Korean stock market.