• Title/Summary/Keyword: KOMPSAT-2 영상

Search Result 277, Processing Time 0.02 seconds

Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A (자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가)

  • Lee, Seung-Min;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.975-988
    • /
    • 2020
  • Change detection is the process of identifying changes by observing the multi-temporal images at different times, and it is an important technique in remote sensing using satellite images. Among the change detection methods, the unsupervised change detection technique has the advantage of extracting rapidly the change area as a binary image. However, it is difficult to understand the changing pattern of land cover in binary images. This study used grid points generated from seamless digital map to evaluate the satellite image change detection results. The land cover change results were extracted using multi-temporal KOMPSAT-3A (K3A) data taken by Gimje Free Trade Zone and change detection algorithm used Spectral Angle Mapper (SAM). Change detection results were presented as binary images using the methods Otsu, Kittler, Kapur, and Tsai among the automated threshold selection algorithms. To consider the seasonal change of vegetation in the change detection process, we used the threshold of Differenced Normalized Difference Vegetation Index (dNDVI) through the probability density function. The experimental results showed the accuracy of the Otsu and Kapur was the highest at 58.16%, and the accuracy improved to 85.47% when the seasonal effects were removed through dNDVI. The algorithm generated based on this research is considered to be an effective method for accuracy assessment and identifying changes pattern when applied to unsupervised change detection.

KOMPSAT-2 위성의 요각 계산방법 연구

  • Kim, Jong-Ah;Kang, Keum-Sil;Jang, Young-Jun;Yong, Sang-Soon;Kang, Song-Doug;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • In order to get the high resolution satellite image, MSC has TDI function in the KOMPSAT-2. So it is required to control the yaw angle of the attitude as operation concepts of KOMPSAT-2. This study was to explain the TDI function, to set up the geometric equation to satisfy the condition, and finally to determine the equation of yaw angle. The calculating program was developed and simulated with orbit and imaging attitude as input data, and the results were compared with the yaw steering values calculated in the on-board computer.

  • PDF

Habitat change monitoring using high-spatial satellite image around the topical coastal area (고해상도 위성영상을 이용한 열대해역 생태분포 변화 모니터링)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Kim, Key-Lim;Park, Heung-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.26-30
    • /
    • 2009
  • 본 연구는 고해상도 위성영상을 이용하여 열대해역에서의 생태환경 분포도를 작성함으로써 생태 환경의 변화를 효과적으로 모니터링 할 수 있도록 하는 데에 목적이 있다. 지구온난화 현상에 따라 산호 면적이 감소하고 있다. 이처럼 산호는 환경 변화가 민감하게 반응을 하기 때문에 열대해역에서 산호를 모니터링 하는 것은 주변 생태환경 변화 전체에 대한 관리 역할을 하기 때문에 중요하다. 본 연구에서는 이러한 열대해역의 환경을 효과적으로 모니터링 하기위하여 고해상도 위성영상인 IKONOS와 Kompsat-2 영상을 이용하여 생태환경 분포도를 작성하여보았다. 연구지역은 한남태평양연구센터가 위치한 마이크로네시아 연방국의 Weno 섬 북동쪽 연안이고, 이 지역에서 2007년과 2008년 2번의 현장관측을 실시하여 총 121개 정점에서 광관측 및 환경 자료를 얻었다. 기존의 감독분류와 무감독분류 방법, 그리고 객체지향 영상분류 방법 등을 이용하여 분포도를 작성하였고, 현장관측 자료를 이용하여 검증하였다. 고해상도 영상이기 때문에 기존 방법에서 나타나는 오분류 현상이 객차지향 영상분류 방법을 사용할 경우 적어지는 결과를 얻을 수 있었다.

  • PDF

Analysis of Relationship between Vegetation Indices and Crop Yield using KOMPSAT (KOreaMulti-Purpose SATellite)-2 Imagery and Field Investigation Data (KOMPSAT-2 위성영상과 현장 측정자료를 통한 식생지수와 수확량의 상관관계 분석)

  • Lee, Ji-Wan;Park, Geun-Ae;Joh, Hyung-Kyung;Lee, Kyo-Ho;Na, Sang-Il;Park, Jong-Hwa;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • This study refers to the derivation of simple crop yield prediction equation by using KOMPSAT-2 derived vegetation index. For a 1.25 ha small farm area located in the middle part of South Korea, the KOMPSAT-2 panchromatic and multi-spectral images of 31th August 2008, 17th November 2008, and 10th September 2009 were used. The field spectral reflectance during growing period for the 6 crops (rice, potato, corn, red pepper, garlic, and bean) were measured using ground spectroradiometer and the yield was investigated. Among the 6 vegetation indices (VI), the NDVI and ARVI between measured and image derived showed high relationship with the coefficient of determination of 0.85 and 0.95 respectively. Using the 3 years field data, the NDVI and ARVI regression curves were derived, and the yields were tried to compare with the maximum VIs value.

Feature Matching using Variable Circular Template for Multi-resolution Image Registration (다중 해상도 영상 등록을 위한 가변 원형 템플릿을 이용한 특징 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1351-1367
    • /
    • 2018
  • Image registration is an essential process for image fusion, change detection and time series analysis using multi-sensor images. For this purpose, we need to detect accurately the difference of scale and rotation between the multi-sensor images with difference spatial resolution. In this paper, we propose a new feature matching method using variable circular template for image registration between multi-resolution images. The proposed method creates a circular template at the center of a feature point in a coarse scale image and also a variable circular template in a fine scale image, respectively. After changing the scale of the variable circular template, we rotate the variable circular template by each predefined angle and compute the mutual information between the two circular templates and then find the scale, the angle of rotation and the center location of the variable circular template, respectively, in fine scale image when the mutual information between the two circular templates is maximum. The proposed method was tested using Kompsat-2, Kompsat-3 and Kompsat-3A images with different spatial resolution. The experimental results showed that the error of scale factor, the error of rotation angle and the localization error of the control point were less than 0.004, $0.3^{\circ}$ and one pixel, respectively.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

A Comparative Analysis for the Digitizing Accuracy by Satellite Images for Efficient Shoreline Extraction (효율적인 해안선 추출을 위한 위성영상별 디지타이징 정확도 비교 분석)

  • Kim, Dong-Hyun;Park, Ju-Sung;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.147-155
    • /
    • 2015
  • The existing field survey and aerial photography involve the waste of manpower and economic loss in the coastline survey. To minimize these disadvantages, the digitization for efficient coastline extraction was conducted in this study using the points extracted from the standard coastline of the approximate highest high water and the diverse satellite images (KOMPSAT-3, SPOT-5, Landsat-8 and Quickbird-2), and the comparative accuracy analysis was conducted. The differences between the standard coastline points of the approximate highest high water and the coastline of each satellite were smallest for KOMPSAT-3, followed by Quickbird-2, SPOT-5 and Landsat-8. The significant probability from between the multipurpose applications satellite and Quickbird-2 (significant probability two-tailed) was statistically significant at 1% significance level. Therefore, high-resolution satellite images are required to efficiently extract the coastline, and KOMPSAT-3, from which images are easily acquired at a low cost, will enable the most efficient coastline extraction without external support.

Development of a Satellite Image Preprocessing System for Obtaining 3-D Positional Information -Focused on KOMPSAT and SPOT Imagery- (3차원 위치정보를 취득하기 위한 위성영상처리 시스템 개발 - KOMPSAT 및 SPOT영상을 중심으로 -)

  • 유환희;김동규;진경혁;우해인
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.291-300
    • /
    • 2001
  • In this paper, we developed a Satellite Image Processing System for obtaining 3-D positional information which is composed of five process modules. As a procedure of them, the Data Process module is the procedure that reads and processes the header file to generate data files. and then calculates orbital parameters and sensor attitudes for obtaining of 3-D positional information with them. The 3D Process module is to calculate 3-D positional information and the Dialog Process module is to correct the time of image frame center using the single image or stereo images for implementing the 3D Process module. We expect to obtain 3-D positional information with the header file and minimum GCPs(1∼2 points) using this system efficiently and economically in comparison with existing commercial software packages.

  • PDF

Analysis of KOMPSAT-5 Orbit for Radargrammetry (레이더 측량기법 적용을 위한 다목적실용위성 5호 궤도 분석)

  • Lee, Hoon-Yol;Jang, So-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 2008
  • KOMPSAT-5 will be launched in 2010 carrying a SAR (Synthetic Aperture Radar) system to obtain high resolution images of the earth surface regardless of weather or solar condition. In this paper, the orbits of KOMPSAT-5 and the imaging modes of SAR were analyzed for radargrammetry, and the best image pairs were suggested. We set the pass number from the nearest orbit to a given ground point and selected image pairs for radargrarnmetry, with height sensitivity of parallax higher than 0.5 to achieve enough height resolution and with the value lower than 0.8 to avoid errors from geometric distortion. On the equator, for example, where the distance between two adjacent passes is fixed to 95 km, we solved the orbit geometry and found that the image pairs with the pass numbers of 3-2 and 5-3 are suitable for radargrarnmetry. As the examples with arbitrary latitude, we selected Daejeon and Sejong Antarctic stations and calculated the orbital elements by using STK software. Three image pairs (5-4, 7-5 and 8-5) were found suitable for radargrammetry at Daejeon while 10 pairs (8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10 and 15-11) at Sejong Antarctic station.

Merging of KOMPSAT-1 EOC Image and MODIS Images to Survey Reclaimed Land (간척지 조사를 위한 KOMPSAT-1 EOC 영상과 MODIS 영상의 중합)

  • 신석효;김상철;안기원;임효숙;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.171-180
    • /
    • 2003
  • The merging of different scales or multi-sensor image data is becoming a widely used procedure of the complementary nature of various data sets. Ideally, the merging method should not distort the characteristics of the high-spatial and high-spectral resolution data used. To present an effective merging method for survey of reclaimed land, this paper compares the results of Intensity Hue Saturation (IHS), Principal Component Analysis (PCA), Color Normalized(CN) and High Pass Filter(HPF) methods used to merge the information contents of the high-resolution (6.6 m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data. The comparison is made by visual evaluation of three-color combination images of IHS, PCA, CN and HPF results based on spatial and spectral characteristics. The use of a contrasted EOC panchromatic image as a substitute for intensity in merged images with MODIS bands 1, 2 and 3 was found to be particularly effective in this study.

  • PDF