• Title/Summary/Keyword: KINEMATIC TECHNIQUES

Search Result 106, Processing Time 0.025 seconds

The Accuracy Analysis of RTK-GPS by Field Calibration in Plane Surveying (국지측량에서의 현장 Calibration에 의한 RTK-GPS 정확도 분석)

  • Park, Woon-Yong;Shin, Dong-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.87-95
    • /
    • 2002
  • Real-time Kinematic GPS enables high accuracy Positioning by real time. If ambiguity use an integer solution, can obtain accuracy of several 'mm', and can obtain accuracy of tens 'em' if use real solution. In this study, We accomplish surveying by existent traditional surveying techniques (Total Station), Static GPS techniques and RTK-GPS techniques by Field Calibration about uniformity measuring point and then compared and ana1yzed each techniques positioning accuracy etc.. Result that achieve by Static-GPS in Plane area, about all measuring points, expressed error fewer than 3cm. Result that achieve RTK-GPS Surveying by Field Calibration in Plane area, could know that RTK-GPS techniques by Field Calibration is available in Plane area because expressing errors fewer than all 6cm, except case that do not get fixed solution of ambiguity Field Calibration RTK-GPS could know economically than existent conventional type measurement and existent GPS's measurement techniques that efficiency is very high.

  • PDF

The Kinematic Analysis and Comparison of Foreign and Domestic 100m Elite Woman's Hurdling Techniques (국내외 우수 여자선수 100m 허들동작의 운동학적 비교 분석)

  • Ryu, Jae-Kyun;Yeo, Hong-Chul;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.157-167
    • /
    • 2007
  • The purpose of this study was to analyze kinematic techniques in the woman's 100m hurdle. In order to find the kinematic parameters, a 3-D video system for kinematic analysis-kwon3d 3.1(Kwon3D Motion Analysis Program Version 3.1)-was used. Eight JVC video cameras(GR-HD1KR) were used to film the performance of Lee Yeon-Kyoung at a frame rate of 60fields/s. The kinematic characteristics from the first hurdle to last hurdle were analyzed at the clearing hurdle spots such as distance, velocities, heights and angles. The real-life three-dimensional coordinates of 20 body landmarks during each phases were collected using a Direct Linear Transformation procedure. After analyzing the kinematic variables in the 100m hurdle run, the following conclusion were obtained; Lee Yeon-Kyoung had to maintain constant stride lengths between hurdles and increase takeoff distance before clearance and shorter landing distance after clearance. She also had to hit the correct takeoff point in front of the hurdle and extend the lead leg at the moment of landing in order to minimize the loss of velocity. She had to sprint between hurdles as fast as possible over 8m/s and run powerful first stride and shortened third stride preparing for the following hurdle clearances.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

Angular Kinematic and Cross-correlation Analysis between Body Segments and Ski among Alpine Ski Turning Techniques (알파인 스키 회전기술에 따른 인체분절과 스키 간 각운동학 및 상호상관분석)

  • Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.205-215
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the relative angles and cross-correlation between body segments and ski among four alpine ski turning techniques. Method: 19 alpine ski instructors participated in this study. Each skier asked to perform 4- types of turning technique, classified by radius and level. 8 inertial measurement units were used to measure orientation angle of segment and ski on the anteroposterior and vertical axis. Results: Significant differences were found between types of turning in the segments-ski relative angle on the anteroposterior and vertical axis (p<.05). Although, cross-correlation showed a high correlation between angles of segment and ski, there were significant differences between types of turning. Conclusion: Based on our results, the relative movement and timing between each segment and ski is different according to the turning techniques, so the training methods should be applied differently.

Deformation Monitoring of a Structure Using Kinematic GPS Surveying Technology (Kinematic GPS 측량기법에 의한 구조물의 변형 모니터링)

  • 이진덕
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.27-40
    • /
    • 1998
  • This paper addresses the suitability of GPS positioning technology to monitoring deformation and movement of structures. The first part of the study is an empirical quantitative study of the repeatability of GPS observations and the second part is a performance evaluation of kinematic GPS, which requires only a few minutes per a point, for monitoring deformation of an engineering structure. On the test network for monitoring of a earth am, four observations have been conducted repeatedly on different seasons and water levels. The reference network was observed in static mode, and monitoring points were observed respectively in rapid-static mode as well as in kinematic mode in each epoch and then the results were compared with those obtained by conventional surveying techniques. The repeatability of baseline vectors to better than average 7 mm in three dimensions was achieved in base line observations between reference points and also the unclosure of reference networks showed the range of 4 ppm to 27 ppm. Compared with conventional surveying techniques, the kinematic approach showed the differences of 3∼4 m in slope distances which were observed from reference points to monitoring points, and showed the differences of 4∼8 m in height. It was ascertained that the kinematic GPS technology provides an efficient alternative to deformation monitoring by conventional means which are capable of detecting movements in the order of 5 mm.

  • PDF

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

A Correlational Study of Biomechanical Variables and Aesthetic Artistry in Grand Pas de Chat

  • Jung, Jung-Eun;Lee, Kyung-Ill
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Objective: The objective of this study is to present a scientific basis for ballet dancer training methods by analyzing the relationships between subjective assessment of the ballet movement 'Grand pas de chat' and kinematic and electromyographic factors. Method: The subjects were 14 professional dancers with 15 years of experience on average. Four cameras and a wireless electromyogram were used to examine kinematic factors, and the filmed videos were analyzed by 3 experts for subjective assessment. Results: Although no differences in kinematic factors were found between the excellent dancer group and the non-excellent dancer group divided based on the experts' assessment, some difference was found in electromyographic factors, especially in relation to the gastrocnemius muscle, rectus femoris muscle, and erector spinae muscle. A relationship between subjective assessment and kinematic and electromyographic factors was found, and factors such as right-side rectus femoris activation, time required, left-side gastrocnemius activation, and front-back displacement affected subjective assessment. Conclusion: This study showed a relationship between subjective assessment and kinematic and electromyographic factors. To receive higher scores in subjective assessment, it is necessary to extend the hang time by using the lower limb muscles. The findings of this study also indicate the necessity of weight training in order to improve dancing techniques.

The Cycle-Slip Correction of Kinematic Data using Doppler frequency (Doppler frequency를 이용한 Kinematic 자료의 Cycle-Slip 보정)

  • 손홍규;김중경;신대호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.105-109
    • /
    • 2003
  • The occurrence of cycle slips is a major limiting factor to attain high precision positioning and navigation results with GPS. Cycle slips must be correctly repaired at the data processing stage. In this study, the technique to find cycle slips in the processing of data collected with Trimble 4700 GPS receivers is suggested. The use of Kalman filtering techniques is used in an attempt to reduce the effect of the noise in the different quantities involved and to improve the accuracy in cycle slip correction.

  • PDF

Acoustic Viscosity Characteristics of Oils with High Molecular Weight VI Improver Additives (고분자량 점도지수향상제가 첨가된 오일의 음향점도 특성)

  • Kong, H.;Ossia, C.V.;Han, H.G.
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.236-242
    • /
    • 2009
  • Oil viscosity is one of the important parameters for machinery condition monitoring. Basically, it is expressed as kinematic viscosity measured by capillary flow and dynamic or absolute viscosity measured by rotary shear viscometry. Recently, acoustic wave techniques appear in the market, measuring viscosity as the product of dynamic viscosity and density. For Newtonian fluids, knowledge of density allows conversion from one viscosity parameter to the other at a specific shear rate and temperature. In this work, oil samples with different chain lengths of viscosity index (VI) improvers and concentrations were examined by different viscometric techniques. Results showed that acoustic viscosity measurements give misleading results for oil samples with high molecular weight VI improvers and at low temperatures ${\leq}40^{\circ}C$.