• Title/Summary/Keyword: KCL-2

Search Result 691, Processing Time 0.023 seconds

A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode (LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구)

  • Lee, Ae-Ri;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • A spectroelectrochemical method has been applied to investigate the electrochemical behaviors and identify the kinds of samarium ions dissolved in high temperature molten LiCl-KCl eutectic. An optically transparent electrode (OTE) fabricated with a tungsten gauze as a working electrode has been used to conduct cyclic voltammetry and potential step chronoabsorptometry. Based on the reversibility of the redox reaction of $Sm^{3+}/Sm^{2+}$, which was determined from the cyclic voltammograms, the formal potential and the diffusion coefficient were calculated to be -1.99 V vs. $Cl_2/Cl^-$ and $2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$, respectively. From the chronoabsorptometry results at the applied potential of -1.5 V vs. Ag/AgCl (1wt%), the characteristic peaks of absorption for samarium ions were determined to be 408.08 nm for $Sm^{3+}$ and 545.62 nm for $Sm^{2+}$. Potential step chronoabsorptometry was conducted using the anodic and the cathodic peak potentials from the voltammograms. Absorbance analysis at 545.63 nm shows that the diffusion coefficient of $Sm^{3+}$ is $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$, which is comparable to the value determined by cyclic voltammetry at the same temperature.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

Survey on the pH of Soils in Korea (우리나라 대표토양(代表土壤)의 반응(反應)(pH) 에 관(關)한 조사연구(調査硏究))

  • Hwang, Kyung Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.153-158
    • /
    • 1973
  • This report was presented to explain the relationships between various soil pH based on the present land use, nodes of depositions, and pH measurement methods ($H_2O$ and KCl extract). The samples were collected from 160 soil series in Korea. The results were summarized as follows. 1. The average pH ($H_2O$) of surface soil were $5.3{\pm}0.6$ for paddy soils, $5.5{\pm}0.9$ for upland, $5.4{\pm}0.5$ for forest soils, $5.3{\pm}0.6$ for grassland and $5.4{\pm}0.7$ for country average. 2. The average pH (KCl) of surface soil were $4.2{\pm}0.6$ for representative soils. Paddy soils had $4.2{\pm}0.6$; upland $4.2{\pm}0.8$; forest soils, $4.0{\pm}0.6$; and grassland, $4.3{\pm}0.6$. 3. The soil pH in B and C horizons were generally higher than that of A horizons. 4. The soil pH in field were correlated with lab. soil pH ($H_2O$) and pH (KCl). Field soil pH measured by pH kit could be highly accepted in accuracy compared with lab. pH of upland, grassland, forest and paddy soils. 5. Soil pH ($H_2O$) of surface based on mode of depositions was generally higher in residuum of mountainous and hilly land than those of Fluvio-marine deposits and old alluvium, however soil pH (KCl) was higher in fiuvio-marine deposits than those of mountainous and hilly land. It was shown that soil pH (KCl) was more reasonable than that of soil pH ($H_2O$) in practical use.

  • PDF

PTCR Effect in Molten Salt Systhesized Barium-Lead Titanate (용융염 합성법에 의한 (Ba, Pb)TiO3의 PTCR효과)

  • 윤기현;이만화
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.349-356
    • /
    • 1988
  • The PTCR characteristics of (Ba0.8Pb0.2)TiO3 ceramics prepared by the molten salt sysnthesis (MSS) method have been investigated as a function of the amount of Nb2O5 dopant and KCl flux. When the weight ratio of KCl to raw material is 0.8, the resistivity at room temperature decreases with increasing amount of Nb dopant up to 0.6 atom%. It can be explained by compensation for electrons due to Nb+5 ion and holes due to K+ ion. The resistivity of (Ba0.8Pb0.2)(Ti0.994Nb0.006)O3 ceramics at room temperature decreases with increasing the ratio of KCl to raw material up to 0.6, and then increases. These results can be explained by the effect of K+ ion.

  • PDF

Density of Molten Salt Mixtures of Eutectic LiCl-KCl Containing UCl3, CeCl3, or LaCl3

  • Zhang, C.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Densities of molten salt mixtures of eutectic LiCl-KCl with $UCl_3$, $CeCl_3$, or $LaCl_3$ at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For $LaCl_3$ and $CeCl_3$, the measured densities were significantly higher than those previously reported from Archimedes' method. In the case of $LiCl-KCl-UCl_3$, the data fit the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

Physico-chemical and Sensory Characteristics of Cooked Sausage Substituted with KCl or MgCl2 for NaCl (KCl 또는 MgCl2의 NaCl 대체 소시지의 이화학적 및 관능적 특성)

  • Jin, Sang-Keun;Kim, Il-Suk;Hur, In-Chul;Nam, Sang-Hae;Kang, Suk-Nam;Shin, Daekeun
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.81-89
    • /
    • 2011
  • This study was carried out to investigate changes in physicochemical and sensory properties of cooked sausages replaced sodium chloride (NaCl) to potassium chloride (KCl) or magnesium chloride ($MgCl_2$) during storage for 30 days under $4^{\circ}C$. All sausages were prepared with different combination of salts as follow; CTL (1.5% NaCl), KCL (0.9% NaCl+0.6% KCl), MCL (0.9% NaCl+0.6% $MgCl_2$), KML (0.9% NaCl+0.3% KCl+0.3% $MgCl_2$) and PST (1.5% PanSalt). Among sausages moisture content in KML was the highest (p<0.05). Lightness and redness in CTL were lower than those of other treatments, but MCL and KML containing $MgCl_2$ showed higher CIE $L^*$ and $a^*$ values than CTL. The pH in CTL was the highest during storage, however, no significant difference was determined between two treatments, MCL and KML (p>0.05). Crude fat content and water holding capacity (WHC), hardness and cohesiveness of MCL sausages were higher than those of CTL. In sensory characteristics of cooked sausages, saltness in MCL was the lowest during 10 and 20 days of storage (p<0.05). Yellowness in PST was lower than other treatmeants. Gumminess and chewiness of texture property of sausages from MCL and KML were higher than CTL. The results indicate that the replacement of NaCl by KCl improved texture, but meat color was not improved as expected. In contrast, the replacement of NaCl by $MgCl_2$ enhanced color, texture and WHC, whereas partial replacement of NaCl by $MgCl_2$ must reduce bitter taste as compared to sausages manufactured with a NaCl only. Therefore, $MgCl_2$ may be a salt replacing NaCl in cooked pork sausages.

New Approaches to Production of Turkish-type Dry-cured Meat Product "Pastirma": Salt Reduction and Different Drying Techniques

  • Hastaoglu, Emre;Vural, Halil
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.224-239
    • /
    • 2018
  • In this study, the possible changes in the quality characteristics of pastirma, Turkish-type dry-cured meat product, produced by using two different salts (NaCl-KCl) in a curing mixture and two different production techniques (natural and controlled condition) were examined. Moisture, pH, salt, sodium, potassium, TBA, fat, water activity, instrumental colour, texture, and sensory analyses were implemented in order to determine the possible effects of these applications. Fat, aw, pH, colour, tiobarbituric acid (TBA), texture, salt, Na and K values may allow these desired modifications in pastirma production to be limited. The substitution of 15% KCl instead of NaCl was acceptable in terms of the sensorial properties of the pastirma. However, the sensory analyses did not allow for using a higher KCl instead of NaCl because both the hardness and chewiness in the texture of the pastirma samples salted with 30% of KCl were not scored positively. Besides this, negative effects, which may occur during the pastirma production under natural conditions, can be eliminated by the production being under controlled conditions.

Thermal Transient Analysis of Electric Initiator Used SUS 304 Bridgewire (SUS 304 발열선을 사용한 전기식 착화기의 열특성 분석)

  • Yoon Ki-Eun;Ryu Byung-Tae;Choi Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.184-187
    • /
    • 2005
  • Performing thermal transient test on electric initiator with SUS 304 bridgewire(diameter 2.3mil) and $Zr-KClO_4$ primary charge and analysing the test data using Fitted Wire Model shows that the thermal characteristic parameter related to primary charge is changed sharply around $300^{\circ}C$. It is determined that this phenomenon is due to endothermic reaction from phase transition of $KClO_4$, which is used as primary charge, and to physical change of thermal transient interface between bridgewire and primary charge. With this results, useful temperature range for the parameter obtained from thermal transient test can be suggested.

  • PDF

Effects of Salt Flux and Alloying Elements on the Coalescence Behaviour of Aluminum Droplets (알루미늄 Droplets 합체거동에 미치는 Salt Flux 및 합금원소 첨가의 영향)

  • Kim, Ye-Sik;Yoon, Eui-Pak;Kim, Ki-Tae;Jung, Woon-Jae;Jo, Duk-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • The remelting for recycling or thin aluminum scrap, such as aluminum chip generally involves melting of these pieces submerged in molten salt flux. In this study, the effects of salt flux compositions and alloying elements on the aluminum dropletscoalescence and oxide film removal were studied in 99.8%Al, Al-1.01%Cu, Al-1.03%Si, and Al-1.38%Mg alloys as a function of holding time at $740^{\circ}C$ Salt fluxes based on NaCl-KCl(1:1) with addition of 5wt.% fluorides(NaF, $Na_3AlF_6$, $CaF_2$) or 5 wt.% chloride($MgCl_2$, $AlCl_3$) were used. The experimental results show that NaCl-KCl(1:1) with addition of 5 wt.% fluorides exhibits better coalescence ability than that with chlorides. The oxide film is not removed by NaCl-KCl(1:1) with addition of 5 wt.%chlorides, while it is removed by NaCl-KCl(1:1) with addition of 5 wt.% fluorides. The aluminum droplets coalescence and oxide film removal by salt fluxes are related to interfacial tension tension between metal and salt flux.

  • PDF

The Influence of Mixed NaCl-KCl Salt on Sodium Intake and Urinary Excretion of Sodium and Potassium (혼합식염 (NaCl-KCl) 이용 조리시 나트륨${\cdot}$칼륨 섭취와 소변 중 나트륨${\cdot}$칼륨 배설에 관한 연구)

  • Park, Su-Jeong;Lee, Sim-Yeol;Paik, Hee-Young
    • Journal of Nutrition and Health
    • /
    • v.40 no.6
    • /
    • pp.500-508
    • /
    • 2007
  • The purpose of this study was to investigate the influence of mixed NaCl-KCl salt on sodium intake and urinary excretion of sodium and potassium. In this study, 3-day food records for pre-experimental diet and 24-hr urine collected for 2-days, 6-day experimental diet food and 24-hr urine were used to evaluate the relationship between Na metabolism. In the experimental diet food, mixed NaCl-KCl salt was added. During the pre-experimental diet period, intakes of Na and K were 178.2 mEq and 56.4 mEq, respectively. The urinary excretion of Na and K in 24-hr were 139.6 mEq, 27.7 mEq, respectively and urinary Na/K ratio was 6.6. During the experimental diet period, intakes of Na and K were 130.2 mEq and 120.4 mEq, respectively. The urinary excretion of Na and K in 24-hr were 100.2 mEq, 37.1 mEq, respectively and urinary Na/K ratio was 2.8. According to this study, it is concluded that mixed NaCl-KCl salt diet decreased the intake of Na, and increased the intake of K.