• Title/Summary/Keyword: K-means method

Search Result 5,046, Processing Time 0.031 seconds

Ganglion Cyst Region Extraction from Ultrasound Images Using Possibilistic C-Means Clustering Method

  • Suryadibrata, Alethea;Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.49-52
    • /
    • 2017
  • Ganglion cysts are benign soft tissues usually encountered in the wrist. In this paper, we propose a method to extract a ganglion cyst region from ultrasonography images by using image segmentation. The proposed method using the possibilistic c-means (PCM) clustering method is applicable to ganglion cyst extraction. The methods considered in this thesis are fuzzy stretching, median filter, PCM clustering, and connected component labeling. Fuzzy stretching performs well on ultrasonography images and improves the original image. Median filter reduces the speckle noise without decreasing the image sharpness. PCM clustering is used for categorizing pixels into the given cluster centers. Connected component labeling is used for labeling the objects in an image and extracting the cyst region. Further, PCM clustering is more robust in the case of noisy data, and the proposed method can extract a ganglion cyst area with an accuracy of 80% (16 out of 20 images).

A Study on Performance Evaluation of Clustering Algorithms using Neural and Statistical Method (클러스터링 성능평가: 신경망 및 통계적 방법)

  • 윤석환;신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.29 no.2
    • /
    • pp.71-79
    • /
    • 1996
  • This paper evaluates the clustering performance of a neural network and a statistical method. Algorithms which are used in this paper are the GLVQ(Generalized Loaming vector Quantization) for a neural method and the k -means algorithm for a statistical clustering method. For comparison of two methods, we calculate the Rand's c statistics. As a result, the mean of c value obtained with the GLVQ is higher than that obtained with the k -means algorithm, while standard deviation of c value is lower. Experimental data sets were the Fisher's IRIS data and patterns extracted from handwritten numerals.

  • PDF

Fuzzy Learning Method Using Genetic Algorithms

  • Choi, Sangho;Cho, Kyung-Dal;Park, Sa-Joon;Lee, Malrey;Kim, Kitae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.841-850
    • /
    • 2004
  • This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.

  • PDF

Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation (블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법)

  • Kim, Geun-Jun;Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper presents Robust k-means clustering-based high-speed bar code decoding method to blur and lighting. for fast operation speed and robust decoding to blur, proposed method uses adaptive local threshold binarization methods that calculate threshold value by dividing blur region and a non-blurred region. Also, in order to prevent decoding fail from the noise, decoder based on k-means clustering algorithm is implemented using area data summed pixel width line of the same number of element. Results of simulation using samples taken at various worst case environment, the average success rate of proposed method is 98.47%. it showed the highest decoding success rate among the three comparison programs.

Clustering Method for Reduction of Cluster Center Distortion (클러스터 중심 왜곡 저감을 위한 클러스터링 기법)

  • Jeong, Hye-C.;Seo, Suk-T.;Lee, In-K.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.354-359
    • /
    • 2008
  • Clustering is a method to classify the given data set with same property into several classes. To cluster data, many methods such as K-Means, Fuzzy C-Means(FCM), Mountain Method(MM), and etc, have been proposed and used. But the clustering results of conventional methods are sensitively influenced by initial values given for clustering in each method. Especially, FCM is very sensitive to noisy data, and cluster center distortion phenomenon is occurred because the method dose clustering through minimization of within-clusters variance. In this paper, we propose a clustering method which reduces cluster center distortion through merging the nearest data based on the data weight, and not being influenced by initial values. We show the effectiveness of the proposed through experimental results applied it to various types of data sets, and comparison of cluster centers with those of FCM.

Nonlinear Process Modeling Using Hard Partition-based Inference System (Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링)

  • Park, Keon-Jun;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.151-158
    • /
    • 2014
  • In this paper, we introduce an inference system using hard scatter partition method and model the nonlinear process. To do this, we use the hard scatter partition method that partition the input space in the scatter form with the value of the membership degree of 0 or 1. The proposed method is implemented by C-Means clustering algorithm. and is used for the initial center values by means of binary split. by applying the LBG algorithm to compensate for shortcomings in the sensitive initial center value. Hard-scatter-partitioned input space forms the rules in the rule-based system modeling. The premise parameters of the rules are determined by membership matrix by means of C-Means clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. The data widely used in nonlinear process is used to model the nonlinear process and evaluate the characteristics of nonlinear process.

An Efficient Clustering Method based on Multi Centroid Set using MapReduce (맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법)

  • Kang, Sungmin;Lee, Seokjoo;Min, Jun-ki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.494-499
    • /
    • 2015
  • As the size of data increases, it becomes important to identify properties by analyzing big data. In this paper, we propose a k-Means based efficient clustering technique, called MCSKMeans (Multi centroid set k-Means), using distributed parallel processing framework MapReduce. A problem with the k-Means algorithm is that the accuracy of clustering depends on initial centroids created randomly. To alleviate this problem, the MCSK-Means algorithm reduces the dependency of initial centroids using sets consisting of k centroids. In addition, we apply the agglomerative hierarchical clustering technique for creating k centroids from centroids in m centroid sets which are the results of the clustering phase. In this paper, we implemented our MCSK-Means based on the MapReduce framework for processing big data efficiently.

HANDLING MISSING VALUES IN FUZZY c-MEANS

  • Miyamoto, Sadaaki;Takata, Osamu;Unayahara, Kazutaka
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.139-142
    • /
    • 1998
  • Missing values in data for fuzzy c-menas clustering is discussed. Two basic methods of fuzzy c-means, i.e., the standard fuzzy c-means and the entropy method are considered and three options of handling missing values are proposed, among which one is to define a new distance between data with missing values, second is to alter a weight in the new distance, and the third is to fill the missing values by an appropriate numbers. Experimental Results are shown.

  • PDF

Zone Clustering Using a Genetic Algorithm and K-Means (유전자 알고리듬과 K-평균법을 이용한 지역 분할)

  • 임동순;오현승
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • The zone clustering problem arising from several area such as deciding the optimal location of ambient measuring stations is to devide the 2-dimensional area into several sub areas in which included individual zone shows simimlar properties. In general, the optimal solution of this problem is very hard to obtain. Therefore, instead of finding an optimal solution, the generation of near optimal solution within the limited time is more meaningful. In this study, the combination of a genetic algorithm and the modified k-means method is used to obtain the near optimal solution. To exploit the genetic algorithm effectively, a representation of chromsomes and appropriate genetic operators are proposed. The k-means method which is originally devised to solve the object clustering problem is modified to improve the solutions obtained from the genetic algorithm. The experiment shows that the proposed method generates the near optimal solution efficiently.

  • PDF

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.