• 제목/요약/키워드: K-means method

검색결과 5,046건 처리시간 0.041초

K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식 (Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network)

  • 박정국;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.

적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘 (A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization)

  • 강지혜;김성수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.516-524
    • /
    • 2004
  • 본 논문에서는 K-means 또는 Fuzzy-c-means 알고리즘에서 클러스터의 중심점을 찾는 과정 중 임의로 선택되는 초기값 선정의 문제를 해결하고, 기존의 단점을 보완하는 새로운 방안으로서 데이터의 분포의 통계적 특성에 따른 초기값 선정 방법을 제안하였다. 기존의 초기값 선정 방법은 초기값에 따라 클러스터링이 매우 민감한 변화를 가져와, 최종적으로 종종 원치 않는 방향으로 가는 문제점을 갖고 있다. 이러한 초기값 선정의 문제가 인지되어 왔지만, 그 문제의 해결방안이 실제적으로 모색된 경우는 없었다. 본 논문에서는 데이타의 통계적 특성을 이용한 초기값 선정 방법을 적용하여, 클러스터링이 형성되는 시간의 단축 및 원치 않는 결과가 생성되는 경우를 약화시켜 시스템의 향상을 가져왔고, 이러한 제안된 알고리즘의 우수성을 기존의 알고리즘과 비교를 통하여 나타내었다.

K-Means 클러스터링 성능 향상을 위한 최대평균거리 기반 초기값 설정 (Refining Initial Seeds using Max Average Distance for K-Means Clustering)

  • 이신원;이원휘
    • 인터넷정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.103-111
    • /
    • 2011
  • 대규모 데이터에 대한 특성에 따라 몇 개의 클러스터로 군집화하는 클러스터링 기법은 계층적 클러스터링이나 분할 클러스터링 등 다양한 기법이 있는데 그 중에서 K-Means 알고리즘은 구현이 쉬우나 할당-재계산에 소요되는 시간이 증가하게 된다. 본 논문에서는 초기 클러스터 중심들 간의 거리가 최대가 되도록 하여 초기 클러스터 중심들이 고르게 분포되도록 함으로써 할당-재계산 횟수를 줄이고 전체 클러스터링 시간을 감소시키고자 한다.

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

통합 측도를 사용한 주성분해석 부공간에서의 k-평균 군집화 방법 (K-Means Clustering in the PCA Subspace using an Unified Measure)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.703-708
    • /
    • 2022
  • k-평균 군집화는 대표적인 클러스터링 기법이다. 하지만 성능 평가 척도와 최소 개수의 군집을 정하는 방법에 대하여 통합하지 못한 한계가 있다. 본 논문에서는 수치적으로 최소 개수의 군집을 정하는 방법을 도입한다. 설명된 분산을 통합측도로 제시한다. 최소 개수의 군집과 설명된 분산 달성을 동시에 만족하려면 주성분 해석의 부공간에서 k-평균 군집화 방법을 수행해야한다는 것을 제시하고자 한다. 패턴인식과 기계학습에서 왜 주성분 분석과 k-평균 군집화를 순차적으로 수행하는가에 대한 설명을 원론적으로 제시한다.

추천시스템을 위한 k-means 기법과 베이시안 네트워크를 이용한 가중치 선호도 군집 방법 (Clustering Method of Weighted Preference Using K-means Algorithm and Bayesian Network for Recommender System)

  • 박화범;조영성;고형화
    • Journal of Information Technology Applications and Management
    • /
    • 제20권3_spc호
    • /
    • pp.219-230
    • /
    • 2013
  • Real time accessiblity and agility in Ubiquitous-commerce is required under ubiquitous computing environment. The Research has been actively processed in e-commerce so as to improve the accuracy of recommendation. Existing Collaborative filtering (CF) can not reflect contents of the items and has the problem of the process of selection in the neighborhood user group and the problems of sparsity and scalability as well. Although a system has been practically used to improve these defects, it still does not reflect attributes of the item. In this paper, to solve this problem, We can use a implicit method which is used by customer's data and purchase history data. We propose a new clustering method of weighted preference for customer using k-means clustering and Bayesian network in order to improve the accuracy of recommendation. To verify improved performance of the proposed system, we make experiments with dataset collected in a cosmetic internet shopping mall.

K-Means 클러스터링에서 초기 중심 선정 방법 비교 (Comparison of Initial Seeds Methods for K-Means Clustering)

  • 이신원
    • 인터넷정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.1-8
    • /
    • 2012
  • 클러스터링 기법은 데이터에 대한 특성에 따라 몇 개의 클러스터로 군집화 하는 계층적 클러스터링이나 분할 클러스터링 등 다양한 기법이 있는데 그 중에서 K-Means 알고리즘은 구현이 쉬우나 할당-재계산에 소요되는 시간이 증가하게 된다. 또한 초기 클러스터 중심이 임의로 설정되기 때문에 클러스터링 결과가 편차가 심하다. 본 논문에서는 클러스터링에 소요되는 시간을 줄이고 안정적인 클러스터링을 하기 위해 초기 클러스터 중심 선정 방법을 삼각형 높이를 이용하는 방법을 제안하고 비교 실험해 봄으로서 할당-재계산 횟수를 줄이고 전체 클러스터링 시간을 감소시키고자 한다. 실험결과로 평균 총소요시간을 보면 최대평균거리를 이용하는 방법은 기존 방법에 비해서 17.9% 감소하였고, 제안한 방법은 38.4% 감소하였다.

K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법 (A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method)

  • 이원형;서주완;김기연;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.97-101
    • /
    • 2022
  • 본 논문에서는 CCTV를 활용하여 K-means, Sobel-mask 기반의 윤곽선 검출 기법을 이용한 영상 속 미세먼지 측정 방법을 제안한다. 제안하는 알고리즘은 CCTV 카메라를 이용하여 이미지를 수집하고 관심영역을 통해 이미지 범위를 지정한다. K-means 알고리즘을 적용하여 군집화가 완료되면 Sobel-mask를 통해 윤곽선을 검출하고 윤곽선 강도를 측정하며, 측정된 데이터를 바탕으로 미세먼지의 농도를 파악한다. 제안하는 방법은 대각선 측정에 장점을 가지는 Sobel-mask의 특성을 활용하여 산맥의 윤곽선을 추출하고 실험 결과로 미세먼지 농도에 따른 검출의 차이를 보여준다.

노인 운전자의 공격적인 운전 상태 검출 기법 (A Method of Detecting the Aggressive Driving of Elderly Driver)

  • 고동우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.537-542
    • /
    • 2017
  • 공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.

이중 K-평균 군집화 (Double K-Means Clustering)

  • 허명회
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.343-352
    • /
    • 2000
  • K-평균 군집화(K-means clustering)는 비계층적 군집화 방법이 하나로서 큰 자료에서 개체 군집화에 효율적인 것으로 알려져 있다. 그러나 종종 비교적 균일한 대군집의 일부를 소군집에 떼어주는 오류를 범하기도 한다. 이 연구에서는 그러한 현상을 정확히 인지하고 이에 대한 대책으로서 ‘이중 K-평균 군집화(double K-means clustering)’방법을 제시한다. 또한 실증적 사례에 새 방법론을 적용해보고 토의한다.

  • PDF