• Title/Summary/Keyword: K-joint parameters

Search Result 681, Processing Time 0.022 seconds

Effects of Ankle Joint Mobilization With Movement on Lower Extremity Muscle Strength and Spatiotemporal Gait Parameters in Chronic Hemiplegic Patients (만성 편마비 환자의 발목에 적용한 능동운동을 동반한 관절가동술이 하지근력과 보행의 시공간적 변수에 미치는 영향)

  • An, Chang-Man;Won, Jong-Im
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.20-30
    • /
    • 2012
  • The purpose of this study was to determine the effect of ankle joint mobilization with movement (MWM) on the range of motion (ROM) in the ankle, on the muscle strength of lower extremities, and on spatiotemporal gait parameters in chronic hemiplegic patients. Fifteen subjects with chronic stroke were divided into two groups: an experimental group (8 subjects) and a control group (7 subjects). Both groups attended two or three sessions of physical therapy each week. The experimental group also attended additional MWM training sessions three times a week for five weeks. For both groups, the ROM of the ankle, the muscle strength of the lower extremities, and the spatiotemporal gait parameters in paretic limbs were evaluated before and after the training period. The results showed that the experimental group experienced more significant increases than did the control group in terms of passive (6.10%) and active (21.96%) ROM of the ankle, gait velocity (12.96%), and peak torque, of the knee flexor (81.39%), the knee extensor (24.88%), and the ankle plantar flexor (41.75%)(p<.05). These results suggest that MWM training in patients with chronic stroke may be beneficial in increasing ROM in the ankle, muscle strength in the lower extremities, and gait speed.

A MULTIVARIATE JUMP DIFFUSION PROCESS FOR COUNTERPARTY RISK IN CDS RATES

  • Ramli, Siti Norafidah Mohd;Jang, Jiwook
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.23-45
    • /
    • 2015
  • We consider counterparty risk in CDS rates. To do so, we use a multivariate jump diffusion process for obligors' default intensity, where jumps (i.e. magnitude of contribution of primary events to default intensities) occur simultaneously and their sizes are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We apply copula-dependent default intensities of multivariate Cox process to derive the joint Laplace transform that provides us with joint survival/default probability and other relevant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP) theory developed in [7] and the martingale methodology in [6] are used. We compute survival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and provide their figures.

Biomechanical Analysis of the Shelf Operation for Dysplastic Hip Joint by Finite Element Analysis (유한요소해석을 이용한 이형성 고관절의 선반형성술에 대한 생체역학 해석)

  • Park W.M.;Kim Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.519-520
    • /
    • 2006
  • The aim of this study was biomechanical analysis of shelf operation in patients with dysplastic hip joint by finite element contact analysis. Two dimensional CT images were used to construct the finite element models to analyze the contact pressure, and the 3D expansion of the Ninomiya's method was used in the calculation of the resultant force in the hip joint. The surgery recovered the center-edge angles to the normal anatomical range and increased the contact areas in two patients. The maximum contact pressures and von-mises stresses were decreased. The present study provides the biomechanical guideline of optimal surgical parameters to maximize the surgical efficiency and the clinical outcomes in dysplastic hip joint using the shelf operation.

  • PDF

Development of Internal Friction Model in Automotive Constant Velocity Joints (자동차용 등속 조인트의 내부 마찰 모델 개발)

  • Lee, Chul-Hee;Jang, Min-Gyu
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.215-220
    • /
    • 2008
  • An internal friction model was developed to model the frictional behavior of automotive Constant Velocity (CV) joints by using the test data from an instrumented CV joint friction apparatus with actual driveshaft assemblies. Experiments were conduced under different realistic operating conditions of oscillatory speeds, CV joint articulation angles, lubrication, and torque. The experimental data were used to develop a physics-based semi-empirical CV joint internal friction coefficient model as a function of different CV Joint operating parameters. It was found that the proposed friction model captures the experimental results well not only the static behavior of friction coefficient, but also the dynamic friction terms, which is the main source of force that causes vehicle vibration problems.

Kinematics Analysis of the Milti-joint Robot Manipulator for an Automatic Milking System (자동 착유시스템을 위한 다관절 로봇 머니퓰레이터의 기구학적 분석)

  • Kim, W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • The purpose of this study was kinematics analysis of the multi-joint robot manipulator for an automatic milking system. The multi-joint robot manipulator was consisted of one perpendicular link and four revolution links to attach simultaneously four teat cups to four teats of a milking cow. The local coordinates of each joints on the robot manipulator was given for kinematics analysis. The transformation of manipulator was able to be given by kinematics using Denavit-Hatenberg parameters. The value of inverse kinematics which was solved by two geometric solution methods. The kinematics solutions was verified by AutoCAD, MATLAB, simulation program was developed using Visual C++.

  • PDF

Effective Estimation of Porosity and Fluid Saturation using Joint Inversion Result of Seismic and Electromagnetic Data (탄성파탐사와 전자탐사 자료의 복합역산 결과를 이용한 효과적인 공극률 및 유체포화율의 추정)

  • Jeong, Soocheol;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2015
  • Petrophysical parameters such as porosity and fluid saturation which provide useful information for reservoir characterization could be estimated by rock physics model (RPM) using seismic velocity and resistivity. Therefore, accurate P-wave velocity and resistivity information have to be obtained for successful estimation of the petrophysical parameters. Compared with the individual inversion of electromagnetic (EM) or seismic data, the joint inversion using both EM and seismic data together can reduce the uncertainty and gives the opportunity to use the advantages of each data. Thus, more reliable petrophysical properties could be estimated through the joint inversion. In this paper, for the successful estimation of petrophysical parameters, we proposed an effective method which applies a grid-search method to find the porosity and fluid saturation. The relations of porosity and fluid saturation with P-wave velocity and resistivity were expressed by using RPM and the improved resistivity distribution used to this study was obtained by joint inversion of seismic and EM data. When the proposed method was applied to the synthetic data which were simulated for subsea reservoir exploration, reliable petrophysical parameters were obtained. The results indicate that the proposed method can be applied for detecting a reservoir and calculating the accurate oil and gas reserves.

Robust control of flexible joint manipulators

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.618-623
    • /
    • 1992
  • In this paper robotic manipulators in which the joints exhibit a certain amount of elasticity are considered. Based on a feedback linearized model, sliding mode control system is designed. In the control system design, weak joint stiffness assumption does not needed. Simulation results are presented to verify the validity of the control scheme. A robustness analysis for a feedback linearized model is also given with respect to uncertainties on the robot parameters.

  • PDF

Analysis of connecting joint anglle and moment in arm landing action in Sports Aerobics (스포츠에어로빅스 팔착지 동작의 연계관절 각도와 모멘트분석)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.311-325
    • /
    • 2003
  • A relation between the movement range of arms and arising moment has been studied to find out efficient movement range to minimize impact concerning arm landing in sports aerobics. Four male athletes who won top three in national-level sports aerobics competition were chosen for the experiment. They were allowed to jump in between two force platform so that the right hand and the right leg could land onto the front and rear force platform, respectively. The sampling frequency was 200 Hz. The main conclusions based on the analysis of the angle and joint moment parameters of wrist, elbow, and shoulder are as follows: 1. The wrist moment was small when its angle was small, indicating that the dorsi-flexion of the wrist joint offered a positive influence to reduce wrist moment. 2. The elbow angle increased as wrist angle decreased and vice versa. This means that the movement range of the wrist joint affects that of the elbow joint. The darsi-flexion of the wrist is the position to absorb the impact of the elbow effectively rather than to absorb the impact of the wrist itself. The impact is absorbed by the flexion of wrist joint rather than the wrist. 3. The degree of moment transfer of the shoulder joint, having absorbed the impact from the elbow and elbow joint, became dependent on the efficiency of the fore-joints impact absorption.

Guidelines for Joint Depth Determination and Timing of Contraction Joint Sawcutting for JCP Analyzed with Fracture Mechanics

  • Yang, Sung-Chul;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.145-150
    • /
    • 2006
  • An experiment with the objective of providing guidelines for joint depth determination and timing of contraction joint sawcutting to avert uncontrolled cement concrete pavement cracking has been conducted. Theoretical analysis and laboratory tests were performed to help in understanding and analyzing the field observation. Using two-dimensional elastic fracture mechanics, the influence of several parameters on crack propagation was delineated by a parametric study, involving initial notch ratio, joint spacing, Young's modulus and thermal expansion coefficient of concrete, temperature gradient, and modulus of subgrade reaction. Bimaterials made of rock plus cement mortar and rock plus polymer mortar were applied to the concrete in a field test section, and they were subjected to fracture tests. These tests have shown that fracture mechanics is a powerful tool not only in judging the quality of the jointed cement concrete pavement but also in providing a criterion for crack propagation and delamination. Based on fracture mechanics, a method is proposed to determine the joint depth, sawcut timing, and spacing of the jointed cement concrete pavement. This method has successfully been applied to a test section in Seohaean expressway. This study also summarizes the research results obtained from a field test for jointed plain concrete pavement, which was also carried out on the Seohaean expressway.

Effects of Different Car Pedal Systems and Driving Skills on Drivers' Lower Extremity Postures during Fatigue (피로 시 운전 숙련도와 자동차 페달시스템 유형이 운전자의 하지자세에 미치는 영향)

  • Hah, Chong-Ku;Oh, Hyung-Sool;Jang, Young-Kwan;Yi, Jae-Hoon;Oh, Seong-Geun
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.4
    • /
    • pp.93-105
    • /
    • 2012
  • The purpose of this study was to investigate drivers' postures in different car pedal systems and skilled levels under fatigue. Twenty four subjects participated in this experiment. For three-dimensional analyses, six cameras (Proreflex MCU-240, Qualisys) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D. In conclusion, ROAs of two leg-pedal system were less than one leg pedal system by pattern analysis. Through statistical tests, skilled levels have effects on ROAs(X, Y, Z) of ankle joint at breaking a pedal and ROAs(Y, Z) of ankle joint at accelerating a pedal. Also, car pedal systems have effects on ROAs(Y, Z) of ankle joint, and ROA(Z) of knee joint at accelerating a pedal. In addition, skilled levels and car pedal systems (cross effects) have an effect on ROA(Z) of ankle joint. These findings suggested that we should improve a present single pedal system.