• Title/Summary/Keyword: K-Means clustering algorithm

Search Result 548, Processing Time 0.026 seconds

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.

Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms (방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구)

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

Anomaly Detection in Sensor Data

  • Kim, Jong-Min;Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2018
  • Purpose: The purpose of this study is to set up an anomaly detection criteria for sensor data coming from a motorcycle. Methods: Five sensor values for accelerator pedal, engine rpm, transmission rpm, gear and speed are obtained every 0.02 second from a motorcycle. Exploratory data analysis is used to find any pattern in the data. Traditional process control methods such as X control chart and time series models are fitted to find any anomaly behavior in the data. Finally unsupervised learning algorithm such as k-means clustering is used to find any anomaly spot in the sensor data. Results: According to exploratory data analysis, the distribution of accelerator pedal sensor values is very much skewed to the left. The motorcycle seemed to have been driven in a city at speed less than 45 kilometers per hour. Traditional process control charts such as X control chart fail due to severe autocorrelation in each sensor data. However, ARIMA model found three abnormal points where they are beyond 2 sigma limits in the control chart. We applied a copula based Markov chain to perform statistical process control for correlated observations. Copula based Markov model found anomaly behavior in the similar places as ARIMA model. In an unsupervised learning algorithm, large sensor values get subdivided into two, three, and four disjoint regions. So extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior in the sensor values. Conclusion: Exploratory data analysis is useful to find any pattern in the sensor data. Process control chart using ARIMA and Joe's copula based Markov model also give warnings near similar places in the data. Unsupervised learning algorithm shows us that the extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior.

Track-Before-Detect Algorithm for Multiple Target Detection (다수 표적 탐지를 위한 Track-Before-Detect 알고리듬 연구)

  • Won, Dae-Yeon;Shim, Sang-Wook;Kim, Keum-Seong;Tahk, Min-Jea;Seong, Kie-Jeong;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.848-857
    • /
    • 2011
  • Vision-based collision avoidance system for air traffic management requires a excellent multiple target detection algorithm under low signal-to-noise ratio (SNR) levels. The track-before-detect (TBD) approaches have significant applications such as detection of small and dim targets from an image sequence. In this paper, two detection algorithms with the TBD approaches are proposed to satisfy the multiple target detection requirements. The first algorithm, based on a dynamic programming approach, is designed to classify multiple targets by using a k-means clustering algorithm. In the second approach, a hidden Markov model (HMM) is slightly modified for detecting multiple targets sequentially. Both of the proposed approaches are used in numerical simulations with variations in target appearance properties to provide satisfactory performance as multiple target detection methods.

Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping (퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection)

  • Roh, Seok-Beom;Kim, Yong Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.646-650
    • /
    • 2014
  • In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

A Study on Economic Analysis Algorithm for Energy Storage System Considering Peak Reduction and a Special Tariff (피크저감과 특례요금제를 고려한 ESS 경제성 분석 알고리즘에 관한 연구)

  • Son, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1278-1285
    • /
    • 2018
  • For saving electricity bill, energy storage system(ESS) is being installed in factories, public building and commercial building with a Time-of-Use(TOU) tariff which consists of demand charge(KRW/kW) and energy charge(KRW/kWh). However, both of peak reduction and ESS special tariff are not considered in an analysis of initial cost payback period(ICPP) on ESS. Since it is difficult to reflect base rate by an amount of uncertain peak demand reduction during mid-peak and on-peak periods in the future days. Therefore, the ICPP on ESS can be increased. Based on this background, this paper presents the advanced analysis method for the ICPP on ESS. In the proposed algorithm, the representative days of monthly electricity consumption pattern for the amount of peak reduction can be found by the k­means clustering algorithm. Moreover, the total expected energy costs of representative days are minimized by optimal daily ESS operation considering both peak reduction and the special tariff through a mixed-integer linear programming(MILP). And then, the amount of peak reduction becomes a value that the sum of the expected energy costs for 12 months is maximum. The annual benefit cost is decided by the amount of annual peak reduction. Two simulation cases are considered in this study, which one only considers the special tariff and another considers both of the special tariff and amount of peak reduction. The ICPP in the proposed method is shortened by 18 months compared to the conventional method.

The Design of a Mobile Robot Path Planning using a Clustering method (클러스터링 기법을 이용한 모바일 로봇 경로계획 알고리즘 설계)

  • Kang, Won-Seok;Kim, Jin-Wook;Kim, Young-Duk;An, Jin-Ung;Lee, Dong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.341-342
    • /
    • 2008
  • GA(Genetic Algorithm)는 NP-Complete 도메인이나 NP-Hard 도메인 내의 문제들에 대해서 최적의 해를 찾기 위해서 많이 사용되어 지는 진화 컴퓨팅 방법 중 하나이다. 모바일 로봇 기술 중 경로계획은 NP-Complete 도메인 영역의 문제 중 하나로 이를 해결하기 위해서 Dijkstra 등의 그래프 이론을 이용한 연구가 많이 연구되었고 최근에는 GA등 진화 컴퓨팅 기법을 이용하여 최적의 경로를 찾는 연구가 많이 수행되고 있다. 그러나 모바일 로봇이 처리해야 될 공간 정보 크기가 증가함에 따라 기존 GA의 개체의 크기가 증가되어 게산 복잡도가 높아져 시간 지연등의 문제가 발생할 수 있다. 이는 모바일 로봇의 잠재적 오류로 발생될 수 있다. 공간 정보에는 동적이 장애물들이 예측 불허하게 나타 날 수 있는데 이것은 전역 경로 계획을 수립할 때 또한 반영되어야 된다. 본 논문에서는 k-means 클러스터링 기법을 이용하여 장애물 밀집도 및 거리 정보를 기반으로 공간정보를 k개의 군집 공간으로 재분류하여 이를 기반으로 N*M개의 그리드 개체 집단을 생성하여 최적 경로계획을 수립하는 GA를 제시한다.

  • PDF

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

Human Action Recognition Based on 3D Human Modeling and Cyclic HMMs

  • Ke, Shian-Ru;Thuc, Hoang Le Uyen;Hwang, Jenq-Neng;Yoo, Jang-Hee;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.662-672
    • /
    • 2014
  • Human action recognition is used in areas such as surveillance, entertainment, and healthcare. This paper proposes a system to recognize both single and continuous human actions from monocular video sequences, based on 3D human modeling and cyclic hidden Markov models (CHMMs). First, for each frame in a monocular video sequence, the 3D coordinates of joints belonging to a human object, through actions of multiple cycles, are extracted using 3D human modeling techniques. The 3D coordinates are then converted into a set of geometrical relational features (GRFs) for dimensionality reduction and discrimination increase. For further dimensionality reduction, k-means clustering is applied to the GRFs to generate clustered feature vectors. These vectors are used to train CHMMs separately for different types of actions, based on the Baum-Welch re-estimation algorithm. For recognition of continuous actions that are concatenated from several distinct types of actions, a designed graphical model is used to systematically concatenate different separately trained CHMMs. The experimental results show the effective performance of our proposed system in both single and continuous action recognition problems.

Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm (조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계)

  • Lim, Sung-Joon;Jung, Dae-Hyung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF