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Purpose: The purpose of this study is to set up an anomaly detection criteria for sensor data 
coming from a motorcycle.
Methods: Five sensor values for accelerator pedal, engine rpm, transmission rpm, gear and speed 
are obtained every 0.02 second from a motorcycle. Exploratory data analysis is used to find any 
pattern in the data. Traditional process control methods such as X control chart and time series 
models are fitted to find any anomaly behavior in the data. Finally unsupervised learning 
algorithm such as k-means clustering is used to find any anomaly spot in the sensor data.
Results: According to exploratory data analysis, the distribution of accelerator pedal sensor 
values is very much skewed to the left. The motorcycle seemed to have been driven in a city at 
speed less than 45 kilometers per hour. Traditional process control charts such as X control chart 
fail due to severe autocorrelation in each sensor data. However, ARIMA model found three 
abnormal points where they are beyond 2 sigma limits in the control chart. We applied a copula 
based Markov chain to perform statistical process control for correlated observations. Copula 
based Markov model found anomaly behavior in the similar places as ARIMA model. In an 
unsupervised learning algorithm, large sensor values get subdivided into two, three, and four 
disjoint regions. So extreme sensor values are the ones that need to be tracked down for any sign 
of anomaly behavior in the sensor values.
Conclusion: Exploratory data analysis is useful to find any pattern in the sensor data. Process 
control chart using ARIMA and Joe’s copula based Markov model also give warnings near 
similar places in the data. Unsupervised learning algorithm shows us that the extreme sensor 
values are the ones that need to be tracked down for any sign of anomaly behavior.
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1. Introduction

Sensors are becoming popular in everyday life tasks 
as the era of Internet of Things (IoT) has lately arrived. 
The IoT will include 26 billion units installed by 2020 
[28]. Future of IoT seems to expect each object in hu-
man life will be equipped with sensors which communi-
cate each other to enable human life easier than before 

[6]. Sensors are deployed to monitor a phenomenon or 
to control a process [1]. They are used in diverse appli-
cations domains including business applications such as 
sales growth, industrial applications such as quality and 
reliability control of product, military applications such 
as enemy surveillance, and personal applications such as 
health monitoring [5]. 

Massive volume of IoT data generated by sensors is 
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extremely dynamic, heterogeneous and imperfect [12]. It 
requires real-time analysis and decision making. One of 
the major goals of IoT systems is automatic monitoring 
and detection of abnormal events, changes or drift [13]. 
Traditionally anomaly detection had been carried out 
manually with the data visualization ([30]). But it is a 
burden on the operator. A survey is provided [13, 31, 34]. 

Wireless medical sensors collect various physiological 
parameter such as heart rate, pulse, oxygen saturation, 
Respiration and blood pressure. These sensors are at-
tached to the subject’s body and continuously monitored 
in hospital or home. Various sensor anomaly detection 
systems in medical sensors have been proposed and ap-
plied to date [37, 17, 20] .

Recently automated statistical and machine learning 
approaches such as minimum volume ellipsoid [35], 
convex pealing [35], nearest neighbor [33], clustering 
[8], neural network classifier [24], support vector ma-
chine classifier [9], and decision tree [23] have been 
employed. These methods are faster than manual ap-
proach but they are not suitable for real-time anomaly 
detection in streaming data. Real-time anomaly de-
tection method has been employed in streaming environ-
mental sensor data where incremental data-driven autor-
egressive model for the data was fitted and a prediction 
interval is calculated in order to identify streaming data 
anomalies [22].

A generic analytics engine is described [2] where sen-
sor data that has been transmitted through cloud infra-
structure is checked for stationarity and non-periodicity, 
and then nonparametric anomaly and change detection 
methods such as generalized Kolmogorov Smirnov test 
[18], bootstrapping based change detection [14] and 
one-class SVM are used to detect the abnormal behaviors.

Capturing all anomalies is impossible, which is the 
reason why anomaly detection methods are used in un-
supervised setting [11]. But when there is a labelled re-
sponse regression can be used to find relationship be-
tween a set of predictors and a response variable [3, 25]. 
There are other predictive models available. Kalman fil-
ter is a recursive filter that approximates the state of a 
system based on noisy measurements. Dynamic Baysian 

Networks can be seen as generalized Kalman filters or 
generalized hidden Markov models [22]. Artificial neu-
ral networks can be used to predict time series using his-
torical data. Such networks can capture non-linear rela-
tionships and can be used for predicting financial time 
series [10].

In time series, a number of regression models such as 
Autoregressive (AR) [4], Autoregressive Moving Average 
(ARMA) [30], and Autoregressive Integrated Moving 
Average (ARIMA) [29] are applied to detect anomaly in 
the series. Sensor value from historic values is predicted 
using the spatiotemporal correlation that exists among 
physiological parameters and compared with the actual 
sensor value, where the difference is compared against a 
threshold value, which is dynamically adjusted [19]. 
However, models using external predictors such as ARX, 
ARMAS have not been thoroughly investigated in the 
literature.

Machine learning approaches are the Naïve Bayes, 
Bayesian network and decision tree methods [7]. Clustering 
method such as K nearest neighbor (K-NN) is also used. 
Mahalanobis Distance (MD) between predicted and ac-
tual multivariate instances is used to detect sensor anom-
aly [26]. With the arrival of a new instance MD is calcu-
lated between the training data in the sliding window 
and the current physiological parameter values. If MD is 
greater than the degree of freedom, abnormal physio-
logical parameters are identified, and the window slides 
one slot by removing the oldest first instance and adding 
the new one.

Another sensor fault detection system for wireless 
sensor network is to utilize piecewise linear models of 
time series. Linear SVM is used to detect abnormal in-
stances and linear regression is used for prediction 
purposes. Linear regression is a statistical modeling 
method used to predict the current value of the moni-
tored parameters. One drawback to linear regression is 
that it is not an efficient prediction tool for application 
where the physiological parameters have rapid trend 
change. 

Modeling serial dependence in time series is an im-
portant step in statistical process control. Fully auto-
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Fig. 1 Time series plot of the raw data

mated routines for obtaining maximum likelihood esti-
mates for given time series data and then drawing a 
Shewhart-type control chart have been proposed [27]. 
The routine is available as “Copula.Markov” package in 
R [15]. It has been pointed out that Joe's copula para-
metric maximum likelihood method provides the most 
reliable estimates of the UCL and LCL compared to the 
other copula methods. So we employed Joe’s copula to 
find any anomaly behavioral points in the sensor data.

Motorcycle is no exception to have a lot of sensor 
data. In this paper, we are looking for anomaly behavior 
in the motorcycle sensor data. Namely sensor values of 
accelerator pedal, engine rpm, transmission rpm, gear 
and speed are gathered every 20 millisecond for a total 
of about 39 minutes and examined for any anomaly 
behavior. In section 2, exploratory data analysis is tried 
for the sensor data in order to find any pattern or any 
correlations in the sensor data. In section 3, control 
charts for independent and correlated data are tried to 
find out-of-control points in the sensor data. Out-of-con-
trol points are interpreted as anomaly behavioral points 
in this section. Joe copula is tried to find any anomaly 
behavioral points. In section 4 unsupervised learning al-
gorithm such as k-means is tried to find clusters among 
the sensor data. Lastly conclusions and some discussions 
are given in section 5. Readers must be warned that the 
results presented here had to be transformed in order to 

preserve the sensitive details of the data.

2. Exploratory Data Analysis

Every 20 millisecond sensor values of accelerator 
pedal, engine rpm, transmission rpm, gear and speed are 
obtained for a total of about 39 minutes. We want to find 
any anomalous behavior in the data. <Fig. 1> shows the 
time series plot of the raw data. In order to fine the trend 
in the data we can get an average of raw data for each of 
every second. <Fig. 2> gives the graph for secondly 
average accelerator pedal sensor values. As expected, 
<Fig. 2> gives more smooth representation of the accel-
erator pedal data. But since we want to find the anom-
alous behavior in the data we may as well use the origi-
nal raw data in <Fig. 1>. So we will dwell on the origi-
nal 20 millisecond sensor values in this paper.

Sum mary statistics are shown in <Table 1>. Acce-
lerator pedal sensor has a mean of 9.783 while the me-
dian 0. The distribution of accelerator pedal sensor val-
ues is very much skewed to the left which resembles ex-
ponential distribution as shown in <Fig. 3>. Next, en-
gine rpm sensor has similar mean and median values of 
about 1,160. According to <Fig. 1> and <Fig. 3>, most 
of the engine rpm sensor values are above 780 except at 
around time 40,000. It seems to us that the motorcycle 
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accel.pedal engine.rpm trans.rpm gear speed
Min 0.000 0.0 0.0 1.000 0.00

1st Qu. 0.000 792.9 786.8 2.000 9.00
Median 0.000 1156.3 1145.6 2.000 22.00
Mean 9.783 1165.4 1086.2 2.401 19.26

3rd Qu. 16.351 1416.6 1334.8 3.000 28.00
Max. 86.275 2846.4 2812.9 6.000 45.00

Table 1 Summary statistics of the raw data

Fig. 2 Secondly average time series plot of accelerator pedal sensor data

Fig. 3 Histogram of the 5 variables

had been turned off during that time since both accel-
erator pedal and speed sensor values are 0. Next, trans-
mission sensor has mean and median of 1086.2 and 

1145.6. Next, gear sensor has mean and median values 
of 2.401 and 2. According to <Fig. 3>, the motorcycle 
had been at low gears of 1, 2 and 3 most of the time. 
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accel.pedal engine.rpm trans.rpm gear speed
accel.pedal 1.0000 0.6477 0.4638 0.0979 0.2676
engine.rpm 0.6477 1.0000 0.8195 0.1894 0.5582
trans.rpm 0.4638 0.8195 1.0000 0.4058 0.7342

gear 0.0979 0.1894 0.4058 1.0000 0.8537
speed 0.2676 0.5582 0.7342 0.8537 1.0000

Table 2 Correlation structure among 5 variables

Fig. 4 Graph of the correlations between the two variables

Finally speed sensor has mean and median values of 
19.26 and 22 respectively. <Fig. 3> shows that the mo-
torcycle had been driven in city at speed less than 45 
kilometers per hour.

It is interesting to see the correlations among the 5 
variables since some of them are presumably correlated. 
<Table 2> gives the correlation between the variables 
while <Fig. 4> shows the graph of the correlation be-
tween the variables. For instance the correlation between 
gear and speed sensor values is as high as 0.85. It is ob-
vious that the high value of gear means that the motor-
cycle is driving fast, which is reflected in the speed sen-
sor gauge. Included in the high correlation values of 0.5 
or above are between engine rpm and transmission rpm, 
between transmission rpm and speed, between accel-
erator pedal and engine rpm, and lastly between engine 
rpm and speed.

However, the correlations in <Table 2> are the correla-
tions for each of the two variables measured at the same 
time. But as a driver if you drive a motorcycle you first start 
the engine, and then the engine sensor value goes up to 788 
from 0 and the gear is at 1 even though accelerator, trans-
mission rpm and speed sensor values are all 0. After sev-
eral seconds of idling you press the accelerator pedal (and 
accelerator pedal sensor value goes up), and then in a split 
second the press of the accelerator pedal is transmitted to 
the engine (and the engine sensor value goes up), and then 
in another split second the power is transmitted to the 
transmission (and the transmission rpm value goes up), 
and then finally in another split second the motorcycle 
speeds up (and the speed sensor value goes up). So it may 
be interesting to know the correlations between one varia-
ble and another variable with time lags. But we will not 
pursue on this issue here.
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Fig. 5 X control chart for original accelerator pedal 

sensor data

Fig. 6 X control chart of accelerator pedal for the 

residual from the ARIMA (5, 1, 3) model

3. Control Charts

We can treat anomaly detection as if we find any in-
teresting points in a process. Control charts come in han-
dy when controlling a process. So we’d like to plot the 
raw sensor data with center line and upper and lower 
control limits. Since it is not reasonable to form a homo-
geneous subgroup in this raw data we try individual X 
chart for each variable, for instance for accelerator pedal. 
Even though the raw data are highly correlated over time 
we treat them as if they are independent and draw X 
chart for accelerator pedal sensor values in <Fig. 5>. But 
since there is high correlation between adjacent sensor 
values the control limits based on the variability between 
adjacent sensor values does not fully reflect the process 
variability, thereby both lower control limit (9.709587) 
and upper control limit (9.857119) are very close to-
gether, which gives too many out-of-control warnings 
throughout almost all the period. We can see that there 
are 116116 out-of-control warnings from the total of 
116593 points and that there are 115915 violating runs. 
The reason we have so many violating runs is because 
we have serially highly correlated sensor values.

It is very common that the serially observed sensor 
data are highly correlated, and some of them are not 

even stationary. If they are not stationary differenced 
series may yield the stationarity. Serially correlated data 
may be modelled through autoregressive and moving 
average (ARMA) model. Then the white noise which is 
the residual from the ARIMA model is used to produce 
X control chart to see where the abnormal pattern 
occurs. We apply the above procedure to accelerator 
pedal sensor values. It turned out that the appropriate 
model for the accelerator pedal sensor values is ARIMA 
(5, 1, 3). Hence, if we let be the original accelerator 
pedal sensor value at time and be the differenced sensor 
value, that is     , then the appropriate 
ARIMA model turns out to be the following.

      

   

      

X control chart for the residual from the ARIMA (5, 
1, 3) model is shown in <Fig. 6>. We can see that the 
upper and lower control limits are 0.032080967 and 
-0.0328096 respectively. It is obvious that the control 
limits are very close to center line since we have a very 
large number of observations, specifically 116593 to be-
gin with. This time, however, there are only 6963 out-of-
control warnings out of the total of 116593 points. This 
number is far less than 116116 which we had when we 
do not consider ARIMA model. But there are still too 
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Fig. 7 Control chart by using Joe’s copula to the 

accelerator pedal data

many out-of-control warnings. So it would be helpful to 
see what abnormal events have happened for the cases 
where the residuals are above 2 in <Fig. 6>. Those cases 
were at times 26547, 30990 and 49704.

Copulas have been a popular method both for defining 
multivariate distributions and for modeling multivariate 
data [36] in the areas of actuarial science, bioinformatics, 
biostatistics and finance because a copula function does 
not require a normal distribution and independent, iden-
tical distribution assumptions. Furthermore, the in-
variance property of copula has been attractive in the fi-
nance area. A copula characterizes the dependence be-
tween the components of a multivariate distribution; 
they can be combined with any set of univariate margin-
al distributions to form a full joint distribution. A copula 
is a multivariate cumulative distribution function (CDF) 
whose univariate marginal distributions are all Uniform 
(0, 1). Suppose that    ⋯  has a multivariate 
CDF with continuous marginal univariate CDFs 

 

⋯ 
 . Then each of 

⋯ 
  is dis-

tributed according to Uniform (0, 1). Therefore the CDF 
of 

⋯ 
 is a copula. This CDF is 

called the copula of  and denoted by .  contains 
all information about dependencies among the compo-
nents of  but has no information about the marginal 
CDFs of . All -dimensional copula functions   have 
domain   and range  .

There are various types of copulas. One simple copula 
is independence copula. Multivariate normal and multi-
variate -distributions offer a convenient way to gen-
erate families of copulas. In this paper we consider an 
Archimedean copula with the strict generator of the form 
below

⋯    ⋯

where the generator function  satisfies the following 

1)  is a continuous, strictly decreasing, and convex 
function mapping   onto  ∞

2)   ∞

3)   

There are several Archimedean copulas such as 
Frank copula, Gumbel copula and Joe copula. It’s been 
pointed out that Joe’s copula parametric maximum like-
lihood method provides the most reliable estimates of 
the UCL and LCL compared to the other copula 
methods. So we used Joe copula which has the gen-
erator   ,  ≥  . It turns 
out that   is 2 for the accelerator pedal data. The esti-
mates of the process mean and standard deviation are 
9.783353 and 14.097014 respectively for our data. 
Therefore, the upper and lower control limits are 
×    and  
×  . <Fig. 7> is the control chart 
after we fit Joe copula to our data. There are 3546 
out-of-control warnings out of the total of 116593 
points. This number is smaller than 6963 which we had 
when we considered ARIMA model. Out-of-control 
warning were at times 28549 to 28835, 30267 to 30420, 
31033 to 36223, 37231 to 38077, 42480 to 42957, and 
44899 to 45051. These out-of-control warning points do 
not exactly coincide with the warning points in ARIMA 
model but they are all close to each other.

In this section we tried univariate approach to accel-
erator pedal only. So it would be more appropriate to try 
multivariate approach to the data. We tried Hotelling’s 
  statistic to the data and came up with multivariate 
chart. But it was naïve to assume that we have in-
dependent observations. Multivariate time series analy-
sis is desired where the concepts of cross correlation and 
transfer function models are used to characterize the 
original sensor data.
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PC1 PC2 PC3 PC4 PC5
accel.pedal 0.3451 0.5363 -0.7380 -0.1982 -0.0966
engine.rpm 0.4780 0.3899 0.2901 0.6934 0.2337
trans.rpm 0.5140 0.1075 0.4755 -0.6788 0.1932

gear 0.3664 -0.6313 -0.3803 0.0715 0.5634
speed 0.5039 -0.3877 0.0219 0.1185 -0.7624

Table 3 The result from the PCA applied to our data

4. Unsupervised Learning

Unsupervised learning is a type of machine learning 
algorithm used to draw inferences from dataset consist-
ing of input data without labeled responses. In our data, 
we have 5 sensor values, specifically sensor values of 
accelerator pedal, engine rpm, transmission rpm, gear 
and speed every 20 millisecond. We do not know wheth-
er the data at each time point is abnormal or not. So we 
can treat the data as if we are in an unsupervised learn-
ing environment. The most common unsupervised learn-
ing method is cluster analysis, which is used for ex-
ploratory data analysis to find hidden patterns or group-
ing in data. The clusters are modeled using a measure of 
similarity which is defined upon metrics such as Euclidean 
or probabilistic distance. 

Common clustering algorithms are hierarchical cluster-
ing, k-means clustering, Gaussian mixture models, self-or-
ganizing maps, and hidden Markov models. Unsupervised 
learning methods are used in bioinformatics for sequence 
analysis and genetic clustering, in data mining for se-
quence and pattern mining, in medical image segmenta-
tion, and in computer vision for object recognition. In this 
paper, k-means clustering is tried for our data. 

But before we try k-means clustering we try principal 
component analysis (PCA) to reduce our 5 dimensional 
data to a lower dimension to reveal the sometimes hidden, 
simplified dynamics that often underlie it. PCA is a stat-
istical procedure that uses an orthogonal transformation to 
convert a set of observations of possibly correlated varia-
bles in a set of values of linearly uncorrelated variables 
called principal components. The number of principal 
components is less than or equal to the smaller of the num-
ber of original variables or the number of observations.

The result from the PCA is shown in <Table 3>. 
Hence, if we let  be the   observation    ⋯ 
  of the   variable         then the 
first principal component can be written as in the follow-
ing equation, which resembles the overall mean or over-
all speed since high values of acceleration pedal, engine 
rpm, transmission rpm, gear and speed mean that the 
motorcycle is in overall high speed.

  
 




   

 

The second principal component can be written as in 
the following equation. This equation is the difference 
between the first 2 variables and the last two variables 
when ignoring the  variable since the coefficient of 
the  variable is small compared to the other coefficients. 
If we want to speed up we press the accelerator pedal 
and engine rpm goes up. Then in a split second gear 
goes up and the speed also goes up. So we can think of 
the first 2 variables as predecessor variables and the last 
2 variables as successor variables. Then the second prin-
cipal component can be thought as the difference be-
tween the predecessor and successor variables.

     

   

 

The above statements can be confirmed from the plot 
of the first two principal components as in <Fig. 8>. 
Note also in <Fig. 9> that the first two prominent princi-
pal components explain more than 80% of the total var-
iance in the original data.
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Fig. 10 Two clusters in terms of accelerator pedal 

and engine rpm

Fig. 11 Tree clusters in terms of accelerator pedal 

and engine rpm

Fig. 8 First two principal components

Fig. 9 Proportion of variance explained by principal 

components

K-means clustering is an unsupervised learning algo-
rithm that tries to cluster data based on their similarity. 
In k-means clustering, we have to specify the number k 
of clusters we want the whole data to be grouped into. 
The algorithm randomly assigns each observation to a 
cluster, and finds the centroid of each cluster. Then, the 
algorithm iterates through the following two steps:

Step 1: Reassign data points to the cluster whose cent-
roid is closest.

Step 2: Calculate new centroid of each cluster.

K-means clustering with two clusters in terms of ac-
celerator pedal and engine rpm is shown in <Fig. 10>. It 
seems to us that the cut-off value of 1000 in engine rpm 
divides the whole region into two clusters. In <Fig. 10>, 
accelerator pedal sensor values do not seem to do much 
in dividing the whole region into two clusters.

K-means clustering with three clusters in terms of ac-
celerator pedal and engine rpm is shown in <Fig. 11>. It 
seems to us that the second cluster in <Fig. 10> is sub-
divided into two disjoint clusters while the first cluster is 
still almost the same as before. The first cluster seems to 
be the region where the engine rpm is below 1000. The 
second cluster seems to be the region where accelerator 
pedal sensor value is below 25 and engine rpm sensor val-
ue is between 1000 and 1500. The rest of the whole region 
seems to belong to the third cluster. Four cluster are 
shown in <Fig. 12>. We can tell from <Fig. 11> and <Fig. 
12> that the third cluster in <Fig. 11> seems to be again 
subdivided into two disjoint clusters, one cluster with ac-
celerator pedal sensor values less than 30 and the other 
cluster with accelerator pedal sensor values greater than 30. 

So far we have divided the whole region into two, 
three, and four disjoint regions. We found that large sen-
sor values of accelerator pedal and engine rpm get sub-
divided into disjoint regions. So extreme sensor values 
are the ones that need to be tracked down for any sign of 
anomaly behavior in the sensor values. In the case of ac-
celerator pedal and engine rpm, accelerator pedal sensor 
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Fig. 12 Four clusters in terms of accelerator pedal 

and engine rpm

Fig. 13 Two clusters in terms of engine rpm and 

transmission rpm

Fig. 14 Three clusters in terms of engine rpm and 

transmission rpm

Fig. 15 Four clusters in terms of engine rpm and 

transmission rpm

Fig. 16 Four clusters in terms of engine rpm and 

transmission rpm

values greater than 35 and engine rpm sensor values 
greater than 1700 need to be watched for.

In <Fig. 10>～<Fig. 12> we divided the whole region 
into 2, 3 and 4 clusters in terms of accelerator pedal sen-
sor values and engine rpm sensor values. We can do the 
same thing in terms of other sensor values. <Fig. 13>～
<Fig. 15> show the same plots in terms of engine rpm 
and transmission rpm. According to <Fig. 13>, we can 
safely divide the whole region into two disjoint clusters; 
the first cluster with transmission rpm less than 900, the 
second cluster with transmission rpm greater than 900.

In <Fig. 14>, the second cluster in <Fig. 13> seems to 
be subdivided into two disjoint clusters; one cluster with 

engine rpm less than 1400 and transmission rpm less 
than 1500, the other cluster with the rest of the region. 
This ‘rest of the region’ is subdivided again into two dis-
joint clusters in <Fig. 15>, making four disjoint clusters 
all together.

We found again that large sensor values of engine 
rpm and transmission rpm get subdivided into two, 
three, and four disjoint regions. So extreme sensor val-
ues are the ones that need to be tracked down for any 
sign of anomaly behavior in the sensor values.

Principal component analysis is a method of extract-
ing important variables from a large set of variables 
available in a data set. It extracts low dimensional set of 
features from a high dimensional data set with a motive 
to capture as much information as possible as shown in 
<Fig. 9>. Now we could draw a graph of two clusters in 
terms of the first two principal component scores  and 
 as in <Fig. 16>. The two clusters are roughly divided 
by the cut-off line of the first principal component score 
of -0.7. So the first cluster is the left hand side of 
  while the second cluster is the right hand 
side of  .
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  Fig. 17 Three clusters in terms of principal 

components 1 and 2

  Fig. 18 Four clusters in terms of principal 

components 1 and 2

But if we want to have 3 disjoint clusters then the sec-
ond cluster in <Fig. 16> seems to be subdivided into two 
disjoint clusters, namely one cluster with the second 
principal component score less than 0 and the other clus-
ter with the second principal component score greater 
than 0. Finally if we want to have 4 disjoint clusters then 
the top right hand side in <Fig. 17> seems to be sub-
divided into two disjoint clusters as in <Fig. 18>.

We found that large first and second principal compo-
nent scores get subdivided into two, three and four dis-
joint regions. So extreme principal component scores are 
the ones that need to be tracked down for any sign of 
anomaly behavior. In this case first principal component 
score greater than 2 and second principal component 
score greater than 1 need to be watched for.

5. Conclusion and Comments

Every 20 millisecond sensor values of accelerator 
pedal, engine rpm, transmission rpm, gear and speed are 
obtained for a total of about 39 minutes. Exploratory da-
ta analysis is used to find any pattern in the data. For in-

stance, the distribution of accelerator pedal sensor values 
is very much skewed to the left. The motorcycle seemed 
to have been driven in city at speed less than 45 kilo-
meters per hour. Included in the high correlation values 
are between gear and speed, between engine rpm and 
transmission rpm, between transmission rpm and speed, 
between accelerator pedal and engine rpm, and between 
engine rpm and speed. 

Next, traditional process control charts such as X con-
trol chart fails due to severe autocorrelation in each sen-
sor data. ARIMA model has been fitted and X control 
chart to the residuals from the fitted ARIMA model are 
used to find any anomaly behavior in the sensor data. In 
the case of accelerator pedal, there are three points 
where they are beyond 2 sigma limits. So it would be 
useful if we can find why they are out of control. We 
can also use copula based Markov model for each sensor 
value in order to find any anomaly behavior in the data. 
We found that the two approaches give approximately 
close points as out of control points.

Finally unsupervised learning algorithm such as 
k-means clustering is used to find any anomaly spot in 
the sensor data. K-means clustering has been done in 
terms of accelerator pedal and engine rpm, and in terms 
of engine rpm and transmission rpm. We found that 
large sensor values get subdivided into two, three, and 
four disjoint regions. So extreme sensor values are the 
ones that need to be tracked down for any sign of anom-
aly behavior in the sensor values.

In this paper the methods we have used require a lot 
of time to process the data since we are dealing with the 
whole data set. In fact, carrying and analyzing the whole 
data set at all times would be a hindrance to real-time 
analysis and decision making. One way to get over this 
problem is naturally break the whole data set into mov-
ing windows, thereby dealing with, say minutely data so 
that we can apply process control techniques such as 
control chart and clustering algorithms k-means and hi-
erarchical clustering to the minutely data. 

We could treat speed as a labelled response since if 
we want a high speed, then we will press accelerator 
pedal. And then in a successive split second engine, 
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transmission, and gear sensors will go up to make the 
speed go up finally. So if we let   be the speed and 
     be the accelerator pedal, engine 
rpm, transmission rpm, and gear at time  then we can 
construct the regression model as follows:

    ⋯

    ⋯
    ⋯
    ⋯

Then for every minutely moving window we can de-
termine the above regression model and decide whether 
there is any outlier in  . We can treat those outliers as 
anomaly behavior in the data. We can also find large 
leverage points in   and treat them as anomaly behav-
ioral points as well. Those are a few future research 
areas.
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